首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The enthalpies, entropies, and equilibrium constants for the hydrogen bonded complexes of m-cresol with ten bases in cyclohexane solvent have been determined by calorimetric and spectroscopic methods. The logarithm of the equilibrium constant correlates well with the dipole moment of the base and the solvatochromic parameter which measures the electron donating ability of the base. The enthalpy and entropy data show that the dipole term does not enter into the log K correlation as a consequence of electrostatic interactions between acid and base in the complex. The free base-solvent interaction, which appears to be dipolar in origin, reduces the entropy of the free base and hence contributes to a favorable entropy change for complex formation. The present data are compared to previously reported data obtained in CCl4 solvent. Solvent effects on the thermodynamic parameters in CCl4 and cyclohexane appear to be related to dipolar interactions by m-cresol and the bases with the two solvents.  相似文献   

2.
Enthalpies of solution have been used to calculate transfer enthalpies for phenol, pyridine, and DMSO between the solvent cyclohexane and the solvents CCl4, benzene, and CHCl3. By use of model compounds, enthalpies due to interactions with phenol, pyridine, and DMSO have been determined. These enthalpies are used to calculate the effect of solvation relative to cyclohexane on hydrogen bonded complexes in CCl4 and benzene solvents. Correlations with enthalpies due to interactions and frequency shifts for the hydroxyl stretch in these solvents have also been made.  相似文献   

3.
Raman spectra of neat fluorobenzene (C6H5F, FB) and its binary mixtures with methanol (CH3OH, M) at varying mole fractions of FB from 0.1 to 0.9 were recorded in order to understand the influence of intermolecular interaction on spectral features corresponding to some selected vibrational bands of FB in the region 1200-450 cm−1. Only few vibrational bands of fluorobenzene show a significant change in their peak position in going from neat liquid to the complexes. The 803, 829 and 994 cm−1 bands show blue shift upon complexation which indicates significant amount of charge transfer between the reference molecule and the solvent. However, the linewidths do not show any appreciable change. Density functional theory (DFT) calculations were performed employing B3LYP method and high level basis set 6-311++G(d,p) to obtain the ground state geometry of neat FB and its hydrogen bonded complexes with methanol in gas phase. In order to account for the solvent effect and also to realize a condition quite close to the experiment, polarizable continuum model (PCM) calculations considering bulk solvation as well as explicit (specific plus bulk) solvation approaches were also performed. A detailed vibrational assignment of the various normal modes has been performed on the basis of potential energy distribution (PED) calculations. Depolarization ratios for the different vibrational bands were calculated and the values match nicely with the depolarization ratio determined from the experimental data.  相似文献   

4.
The density and ultrasound propagation velocity for Et4NBF4 solutions in propylene carbonate were determined in a concentration range of 0.01–0.8 mol/kg at 283.15, 298.15, and 308.15 K. Apparent molar compressibilities and volumes of the studied electrolyte in solvent were calculated. Solvation numbers and molar adiabatic compressibilities of solvate complexes were determined using the isoentropic compression method. These quantities indicated weak solvation of tetraethylammonium tetrafluoroborate in propylene carbonate in the range of concentrations practically used in ionistors.  相似文献   

5.
The enthalpies of solution of 1-pentanol, 1-hexanol and 1-heptanol and water were determined in formamide and in ethylene glycol, at 25‡C, by macrosolution calorimetry. The observed enthalpies of solution for the n-alcohols are positive in the two solvents, and of similar magnitude. The enthalpy of solution of water is positive in formamide, and negative in ethylene glycol. From the enthalpies of solution, the enthalpies of solvation and the enthalpies of transfer for organic solvent↿ water were calculated. Using our values and literature data for alkanols, it was possible to see that both the enthalpies of solution and the enthalpies of solvation presented a constant CH2 increment for the entire series, in contrast with their behavior in water. The methylene increments for these properties in different solvents are compared with parameters considered to reflect the cohesive energy of the solvent.  相似文献   

6.
The enthalpies of mixing of acetonitrile with formamide,N-methylformamide,N,N-dimethylformamide, and hexamethylphosphoric triamide were measured in the temperature interval from 283.15 to 328.15 K. The enthalpy coefficients of binary and ternary interactions were calculated by the methods of the McMillan-Mayer theory. The contributions to the enthalpy of solution due to the formation of a cavity in the solvent, Δcav H°, and those due to the interaction of the solute with the solvent, Δint H°, were determined. The enthalpies of the specific and non-specific solvation of acetonitrile in the corresponding amides were calculated. Specific interactions were found to contribute the most to the solvation enthalpy of acetonitrile. The obtained values were compared with analogous values for solutions of acetonitrile in water and alcohols. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 289–293, February, 1997.  相似文献   

7.
The effect of the local interaction of a metal ion with the solvent on the conformations of calcium complexes of arylazacrown ethers and an azacrown-containing dye was studied using the density functional method with the PBE and B3LYP functionals. The structures were studied and the interaction energies were determined for the calcium complexes with n = 1–12 water or acetonitrile molecules. It was found that the inner coordination sphere of the free Ca2+ cation contains six H2O or seven MeCN molecules. The cation—acetonitrile interaction energy is higher than the cation—water interaction energy up to the moment the second solvation shell of the cation is almost complete (n = 11). The inner coordination sphere of Ca2+ in the macrocycle cavity contains at most three water molecules, while the fourth one is displaced to the second coordination sphere. Taking into account the local interaction with the solvent (H2O or MeCN), the conformers of the calcium complexes of arylazacrown ethers and the azacrown-containing dye were studied. It was shown that the presence of two to four water molecules in the coordination sphere of the cation reduces the relative energies of the conformers with broken metal—nitrogen bond, thus favoring ground-state metal recoordination. For Part 1, see Ref. 1. Dedicated to Academician A.L. Buchachenko on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1981–1992, September, 2005.  相似文献   

8.
We show how the shift in the equilibrium constant K PT for formation of a proton-transfer adduct in a non-interactive solvent, upon addition of a second, hydrogen-bonding solvent S reveals the nature of the hydrogen bonding solvation process. Data are analyzed for the pentachlorophenoltriethylamine proton-transfer equilibrium in cyclohexane solvent, under-going solvation by the acidic alcohols, 2,2,2-trichloroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol. K PT vs. [S] data are fitted to a binding isotherm corresponding to two-stage solvation of both the adduct and the free amine. Stoichiometries and binding constants for both primary and secondary solvation of both solvated species are determined as adjustable parameters. Best fits correspond to both the adduct and free amine under-going primary solvation by one alcohol molecule (presumably at the oxygen and nitrogen lone-pairs, respectively) followed by secondary solvation by one to nine additional alcohol molecules, with binding constants ranging from 2100 M–1, for primary solvation of the adduct by hexafluoro-2-propanol, down to 7 M–1, for secondary solvation of the amine by trichloroethanol. We speculate that the secondary solvation numbers represent average sizes of hydrogen-bonded alcohol chains, nucleated by the enhanced basicity of the primary-solvation alcohol.  相似文献   

9.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

10.
Selected microscopic properties, namely ET(30) polarity, Kamlet-Taft solvatochromic parameters and dissociation constant of picric acid, have been correlated with solvent composition in 2-methoxyethanol/1,2-ethanediol mixtures. Theoretical and semi-empirical equations which embody preferential solvation of the solute and show standard deviations lower than 0.01 for solvatochromic parameters and 0.03 for pK values have been proposed.  相似文献   

11.
The temperature dependences of the equilibrium constant K of the reversible chain reaction of N,N′-diphenyl-1,4-benzoquinonediimine with 2,5-dichlorohydroquinone in benzene, chlorobenzene, anisole, benzonitrile, and CCl4 were studied. The enthalpies and entropies of the reaction in these solvents were determined, and a linear dependence between them in aromatic solvents was found. The equilibrium constant depends on the solvent nature: the replacement of CCl4 by benzene at T = 298 K increases K from 13.6 to 140. The solvation effects are caused by several types of intermolecular interactions of participants of equilibrium with the medium. The decrease in K in the benzene-anisole-benzonitrile series is related, to a great extent, to complex formation with hydrogen bonding between 2,5-dichlorohydroquinone and the solvents. In anisole a charge-transfer complex is formed between the solvent and reaction product (2,5-dichloroquinone). The constant and enthalpy of the complexation were estimated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2296–2302, December, 2007.  相似文献   

12.
The apparent stability constants for porphyrin and metalloporphyrin complexes with an electron acceptor have been determined in mixed solvents. The variation of the apparent stability with solvent composition is evaluated in terms of solvation of the complex and reactant species and in terms of the exclusion of the solvent from the solvation sheath of the reactants, according to the equilibrium AS a +DS b =CS x +yS.  相似文献   

13.
Summary. In this study, the stoichiometric protonation constants, logKOH and logKNH, of sixteen substituted N-benzylidene-2-hydroxyanilines have been determined potentiometrically in ethanol-water mixtures of varying composition (10–80% ethanol by volume) at 25.0±0.1°C. The values of the constants, logK, were submitted to factor analysis in order to obtain the number of factors which affect the variation of the whole data sets of protonation constants and, afterwards, to target factor analysis to identify these factors. The influence of solvatochromic parameters in the interactions between Schiff bases derivatives and the solvent studied was identified and quantified. Kamlet and Taft general equations allow calculation of the logK values of Schiff bases studied in any ethanol-water mixtures up to 80% (v/v) and thus provide the knowledge of the acid-base behaviour in these solvent media. Further, the quasi-lattice quasi-chemical (QLQC) theory of preferential solvation has been applied to quantify the preferential solvation by water of electrolytes in ethanol-water mixtures.  相似文献   

14.
Two different approaches were used for a theoretical study of the solvation of N2, with HF, H2O, NH3, CH4 as solvents. In the first approach, the contour maps of orientationally optimized interaction energy between N2 and one solvent molecule were computed by fast semiempirical methods (Extended Hückel and CNDO/2) in order to find a reliable but not too expensive calculation method for solvation models. In the case of the N2-H2O system, anab initio map was also evaluated for comparison. The second approach is based on the building up of clusters with one molecule of N2 surrounded by a number (2 to 8) of solvent molecules and finding the structure of such clusters by energy minimization. From the structures obtained it results that they are determined mainly by steric factors, so that clusters optimized by means of different methods are similar, despite the remarkable differences in the maps.  相似文献   

15.
The synthesis and characterization of binary Cu(II)- (1), Co(II)- (2), Ni(II)- (3), Mn(II)- (4), Cr(III)- (5), Fe(III)- (6), La(III)- (7), UO2(VI)- (8) complexes with sparfloxacin (HL1) and ternary Cu(II)- (9), Co(II)- (10), Ni(II)- (11), Mn(II)- (12), Cr(III)- (13), Fe(III)- (14), La(III)- (15), UO2(VI)- (16) complexes with sparfloxacin (HL1) and dl-alanine (H2L2) complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV–Vis, thermal analysis and 1H-NMR spectral studies.The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature.All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complexes which were four coordinate, square planar and U- and La-atoms in the uranyl and lanthanide have a pentagonal bipyramidal coordination sphere. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug sparfloxacin. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)- and Mn(II) complexes exhibited higher potency as compared to the parent drug against Gram-negative bacteria.  相似文献   

16.
Viscosity B-coefficients for cesium chloride and lithium sulfate in methanol + water mixtures at 25 and 35 °C are reported. A general treatment of the quasi-thermodynamics of viscous flow of electrolyte solutions is described. ΔG 3 Θ (1→1′), the contribution made to the Gibbs energy of activation of the solution by the influence of the solute on the solvent, is a function of solute–solvent interactions only; but, ΔH 3 Θ (1→1′) and ΔS 3 Θ (1→1′) also reflect the solvent–solvent interactions. In aqueous solution all alkali-metal ions except Li+ are sterically unsaturated, having solvent co-ordination numbers n<n max , the maximum allowed sterically. Such complexes exchange molecules with the solvent more readily than saturated ones and have energy–reaction co-ordinate diagrams in forms that explain the negative B or ΔG 3 Θ (1→1′) values found in aqueous solution. Saturated complexes are the norm in non-aqueous solvents, and the ΔG 3 Θ (1→1′) values are determined mainly by the secondary solvation. Behavior in mixed solvents reflects the transition from aqueous to non-aqueous behavior across the range of solvent composition.  相似文献   

17.
The enthalpy of mixing of formamide,N-methylformamide,N,N-dimethylformamide, and hexamethylphosphoric triamide with MeCN was measured in the 283–328 K range. The enthalpic coefficients of the binary and ternary interactions between the amide molecules are calculated within the framework of the McMillan-Mayer theory. The contributions to the enthalpy of dissolution due to cavity formation in the solvent (Δcav H 0) and due to solute-solvent interaction (Δint H 0) were determined. The enthalpies of specific and nonspecific solvation of amides in MeCN were calculated. The main contribution to the enthalpy of solvation of formamide andN-methylformamide is from specific interactions, while forN,N-dimethylformamide and hexamethylphosphoric triamide it is from nonspecific interactions. The values obtained are compared with those for solutions of the amides mentioned in water and methanol. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1730–1735, October, 1993.  相似文献   

18.
The extraction process of ternary ion-association complexes of molybdenum (VI) with some polyphenols (4-nitrocatechol, 2,3-dihydroxy naphthalene) and thiazolyl blue has been investigated by using an extraction-spectrophotometric method. The optimum conditions for their quantitative preparation in aqueous medium and subsequent extraction into an organic solvent have been found. The extraction, distribution and association constants, and the recovery factors have been calculated. The composition of the complexes has been determined. A precise, sensitive and simple extraction-spectrophotometric method for determination of molybdenum in products from ferrous metallurgy has been developed.  相似文献   

19.
Inter- and intramolecular nuclear magnetic quadrupole relaxation measurements have been used to study the system methanol (CH3OH)+ N,N-dimethylformamide (DMF)+NaI at 25°C. The dynamic behavior of the solvent molecules was investigated, throughout the composition range of the binary mixtures, by means of 14 N relaxation of DMF and 2 H of methanol-d 1 (CH 3 OD). The intermolecular relaxation of 23 Na+ in pure DMF was used to obtain information about the symmetry of the solvent electric dipole arrangement in the solvation sphere of the ion. The investigation of preferential solvation around Na+ in the binary mixtures was carried out by means of 23 Na+ relaxation measurements using, for the first time, both the CH 3 OH/CD 3 OD and the DMF/DMF-d 7 dynamic isotope effect. The results show that, throughout the composition range, there is preferential solvation by DMF. Furthermore, the use of the isotope effects of both components allowed for the first time a basic check of the reliability of the method since we obtained two independent sets of data for the composition of the Na+ solvation shell in the mixtures. The consistency of the two separate data sets demonstrates that the application of the dynamic isotope effect represents a powerful tool in preferential solvation studies.  相似文献   

20.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号