首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A tetranitrile monomer N,N-bis{2-[2-(3,4-dicyanophenoxy)ethoxy]ethyl}-4-methylbenzenesulfonamide (3) was synthesized by nucleophilic aromatic substitution of N,N-bis[2-(2-hydroxyethoxy)ethyl]-4-methylbenzenesulfonamide (1) onto 4-nitrophthalonitrile (2). The metal-free phthalocyanine polymer (4) was prepared by the reaction of a tetranitrile monomer 3 in 2-(dimethylamino)ethanol. Ni(II), Co(II) and Cu(II) phthalocyanine polymers were prepared by the reaction of the tetranitrile compound with the chlorides of Ni(II), Co(II) and Cu(II) in 2-(dimethylamino)ethanol (DMAE). The Zn(II)-phthalocyanine polymer was prepared by the reaction of the tetranitrile compound with the acetate of Zn(II) in DMAE. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

2.
4-[2-(Phenylthio)ethoxy]phthalonitrile 3 was synthesized by nucleophilic displacement of nitro group in 4-nitrophthalonitrile with 2-(phenylthio)ethanol 1. The metal-free phthalocyanine 4 was prepared by the reaction of a dinitrile monomer with 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I) phthalocyanines 5, 7, 8 were prepared by reaction of the dinitrile compound with the chlorides of Ni(II), Co(II), Cu(I) in DMAE. Zn(II) phthalocyanine 6, was prepared by reaction of the dinitrile compound with the acetates of Zn(II) in DMAE. Electrochemical behaviours of novel metal-free, Co(II) and Zn(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry techniques. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

3.
Novel water soluble free-base, Zn(II) and Co(II) metallo phthalocyanines with four cinnamic acid moieties were prepared from the corresponding tetrakis(7-coumarinthio-4-methyl)-phthalocyanine by the lactone ring opening reaction. The new compounds were purified and characterized by elemental analysis, 1H NMR, Maldi-TOF, FT-IR and UV–Vis spectral data. Cyclic and differential pulse voltammetry and in situ spectroelectrochemistry of the 2,9,16,23-tetrakis(7-coumarinthio-4-methyl) substituted free-base 1a, Zn(II) 1b and Co(II) 1c phthalocyanines, employed as the starting compounds have been studied. This allowed us not only to identify metal- and phthalocyanine ring-based redox processes of the complexes, but also the effect of aggregation on these processes.  相似文献   

4.
The olefinic centred Schiff base (3) was obtained from the condensation of substituted dialdehyde (1) with 2-amino-4-methylphenol (2) in a 1:2 ratio. The diphthalonitrile derivative (5) was prepared by the reaction of 4-nitrophthalonitrile (4) and compound (3) in dry dimethylformamide/potassium carbonate. The key product (5) was obtained by nucleophilic substitution of an activated nitro group into an aromatic ring. The cyclotetramerization of compound (5) with phthalonitrile (6) in 1:6.15 ratio gave the expected metal-free phthalocyanine of clamshell type (7), and with metal salts of Zn(II), Ni(II), Co(II) and Cu(II) gave metallophthalocyanines of clamshell types (8-11), respectively in dimethylaminoethanol/1,8-diazabycyclo[5.4.0]undec-7-ene system. The products were purified by several techniques such as crystallization and preparative thin layer chromatography. The newly prepared compounds were characterised by a combination of elemental analyses, IR, 1H/13C NMR, MS and UV-Vis spectroscopy.  相似文献   

5.
Metal-free (2) and Co(II), Zn(II), Ni(II), Cu(II) metallophthalocyanines (2ad) with four 4-phenyloxyacetic acid groups on the periphery were prepared by cyclotetramerization of new p-(3,4-dicyanophenoxy)phenylacetic acid (1) and the corresponding divalent metal salts. Further reactions of these products with thionylchloride and then benzylamine in tetrahydrofuran, and octanol in pyridine gave amide (3, 3ad) and ester (4, 4ad) derivatives, respectively. The new compounds have been characterized by elemental analyses, IR, UV–Vis, mass and 1H NMR spectroscopy. The redox properties of compounds 2 and 2ad were identified by cyclic voltammetry.  相似文献   

6.
This paper describes a new symmetric metal-free phthalocyanine and its transition metal complexes which were prepared by a condensation of 1,2-dihydroacenaphthylen-1-ol 1 and 4-nitro phthalonitrile 2 with Co(II), Ni(II), Cu(II), and Zn(II) salts in 2-(dimethylamino)ethanol, respectively. The novel phthalocyanines bearing oxygen donor atoms on peripheral position have been characterized by IR, UV-Vis, 1H NMR, 13C NMR, Mass spectra and elemental analysis. The thermal behaviours of 4-8 were investigated by TG/DTA.  相似文献   

7.
A series of new 3d-metal complexes have been prepared by the reaction of M(CH3COO)2 (M = Zn(II), Co(II), Ni(II)) and 1,2-diamino-3-(2-benzothiazolyl)-4(5H)-ketopyrrole (HL) in a methanol (3) or a methanol/dmf (1, 2) medium. All the complexes have been studied by elemental analyses, electronic and IR spectroscopies. The zinc(II) complex 1 and the ligand HL have been investigated using the method of 1H NMR-spectroscopy at various temperatures. The disappearance of the signal from one proton of the amino group H(5) in the spectrum of complex 1 confirmed the existence of the ligand in the deprotonated form. According to the data of the 1H NMR-spectroscopy, the ligand HL is coordinated to zinc(II) through the nitrogen atom of the deprotonated amino group and the nitrogen atom of the benzothiazole substituent. These data are in agreement with X-ray structural studies for the ligand HL and the zinc(II) complex 1.  相似文献   

8.
Three new Zn(II) complexes containing the ligands 5-amino-8-methyl-4H-chromen-4-one (1), 6- or 7-amino-2-phenyl-4H-chromen-4-one (2, 3) were prepared. The new synthesised compounds were characterised by IR, 1H NMR and MS spectroscopy. The crystal structure of complex 4 was determined with the use X-ray diffraction. The Zn(II) centre of 4 is linked by two chlorido and two N-bound aminochromone ligands, 1, in a strongly distorted tetrahedral configuration with the dissymetric point group C2. The protonation constants of the ligands 1, 2 and 3 corresponded to 3.68, 3.88 and 6.83, respectively. The stability constants of the Zn(II) complexes were calculated from the potentiometric titration data. The complexes were found to have the formulae ML and ML2 for ligands 1 and 2, and ML for ligand 3. Fluorescence spectroscopic properties were also studied; the strongest fluorescence in solution was exhibited by complex 6.  相似文献   

9.
The novel zinc phthalocyanine (3) with malonylester and chloro groups on each benzo unit was synthesized from 4-diethoxymalonyl-5-chloro-phthalonitrile (1). The unsymmetrically substituted zinc phthalocyanine (5), carrying hexylthio, malonylester and chloro groups at the periphery, was obtained from 4-diethoxymalonyl-5-chloro-phthalonitrile (1) and 4,5-bis-hexylsulfanyl-phthalonitrile (2) by a statistical condensation method as an A3B type unsymmetrical phthalocyanine compound. Transesterification of the malonyl esters of the new symmetrical and unsymmetrical phthalocyanines occurred during the cyclotetramerization of dinitriles with Zn(CH3COO)2 in 1-pentanol in the presence of DBU. Octa-hexylthio-substituted zinc phthalocyanine (4) was prepared according to the literature. The photophysical and thermal properties of all the phthalocyanine complexes are described for the first time. These novel symmetrical and unsymmetrical phthalocyanine macrocycles have been characterized by a series of spectroscopic methods including 1H NMR, electronic absorption, IR and mass spectroscopy, in addition to elemental analysis. Their narrow long wavelength absorption band shows that the bulky substituents on the periphery prevent aggregation. The unsymmetrically substituted phthalocyanine (5) gave a greater fluorescence quantum yield in chloroform than the symmetrical analogues (3 and 4).  相似文献   

10.
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2 (L = L1 [N1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L2 [N1-pyridine-2-ylmethylene-propane-1,3-diamine] for complex 2 or L3 [N1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)2 (L = L4 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L5 [N,N′-bis(pyridine-2-ylmethyline)-propane-1,3-diamine] for complex 5 or L6 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, 1 and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry.  相似文献   

11.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

12.
Zwitterionic Ni(II) complexes of type NiX3(NCN+), (NCN+ = 1-(2-diphenylphosphinoethyl)-3-(2,4,6-trimethylphenyl)imidazolium and X = Cl, 6; Br, 7), have been prepared by addition of NCN+ bromide (1a) or tetrafluoroborate (1b) to NiX2L, and characterised by X-ray crystallography. They have been used as catalytic precursors in the Kumada-Corriu coupling reaction between phenylmagnesium chloride and 4-chloroanisole, yielding high catalytic activities. Stoechiometric deprotonation investigations did not provide clear evidence for the formation of coordinated carbene species.  相似文献   

13.
Complexes of 2-((3,5-dimethyl)-1H-pyrazol-1-ylmethyl)pyridine (L1), 2-((3,5-ditert-butyl-1H-pyrazol-1-yl)methyl)pyridine (L2), 2-((3,5-diphenyl)-1H-pyrazol-1-yl)methyl)pyridine (L3), 2-((3,5-bis(trifluoromethyl)-1H-pyrazol-1-ylmethyl)pyridine (L4) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (L5) with cobalt(II), iron(II) and nickel(II), Ni(L1)Cl2 (1), Co(L1)Cl2 (2), Fe(L1)Cl2 (3), Ni(L2)Cl2 (4), Ni(L3)Cl2 (5), Co(L3)Cl2 (6), Fe(L3)Cl2 (7), Ni(L4)Cl2 (8) and Ni(L5)Cl2 (9), were used as catalyst precursors to produce vinyl-addition type norbornene polymers. Both the identity of the metal center and nature of ligand affected the polymerization behaviour of the resultant catalysts. Nickel catalysts were generally more active than the corresponding iron and cobalt analogues. The polynorbornene produced have high molecular weights (0.5-2.1 × 106 g/mol) and narrow molecular weight distributions. Analyses of polymer microstructure using NMR and IR spectroscopy confirmed the polymers produced to be vinyl-addition polynorbornene.  相似文献   

14.
N,N′-Pyromelliticdiimido-di-l-methionine (3) was prepared from the reaction of pyromellitic dianhydride (1) with l-methionine (2) in glacial acetic acid and pyridine solution at refluxing temperature. The direct polycondensation reaction of the monomer diimide-diacid (3) with 1,3-phenylenediamine (4a), 1,4-phenylenediamine (4b), 2,6-diaminopyridine (4c), 3,5-diaminopyridine (4d), 4,4′-diaminodiphenylether (4e) and 4,4′-diaminodiphenylsulfone (4f) was carried out in a medium consisting of triphenyl phosphate, N-methyl-2-pyrolidone, pyridine and calcium chloride. The resulting poly(amide-imide)s having inherent viscosities 0.45-0.53 dl g−1 were obtained in high yields and are optically active and thermally stable. All of the above compounds were fully characterized by IR spectroscopy, elemental analyses and specific rotation. Some structural characterization and physical properties of these new optically active poly(amide-imide)s are reported.  相似文献   

15.
The present paper includes synthesis and spectral characterization of the novel prepared palladium(II) and zinc(II) complexes with 2-formyl pyridine N(4)-1-(2-pyridyl)-piperazinyl thiosemicarbazone, HFo4Npypipe, 1 and the 2-acetyl pyridine N(4)-1-(2-pyridyl)-piperazinyl thiosemicarbazone, HAc4Npypipe, 2. The Pd(II) complexes [PdCl(Fo4Npypipe)], 3, [PdCl(Ac4Npypipe)], 4 and the Zn(II) complexes [ZnCl2(Fo4Npypipe)], 5 and [ZnCl2(Ac4Npypipe)], 6 have been characterized by elemental analyses and spectroscopic studies. The crystal structure of the complexes [PdCl(Fo4Npippy)], 3 and [PdCl(Ac4Npippy)], 4, have been solved by single-crystal X-ray diffraction. The electronic, IR, UV/Vis, and NMR spectroscopic data of the complexes are reported. The results of the cytotoxic activity of 16 have been evaluated in vitro against the cells of three human cancer cell lines: MCF-7, T24, A-549 and a mouse L-929 (a fibroblast-like cell line cloned from strain L). For selected compounds 2 and 6 the acute toxicity and antitumor activity were evaluated on leukemia P388-bearing mice. The Zn(II) compounds 5 and 6 are considered as agents with potential antitumor activity, and can therefore be candidates for further stages of screening in vitro and/or in vivo.  相似文献   

16.
The structural and spectroscopic characterization of coordination compounds of four aromatic amines derived from benzimidazole, 2-aminobenzimidazole (L1), 1-(S-methylcarbodithioate)-2-aminobenzimidazole (L2), 2-(2-aminophenyl)-1H-benzimidazole (L3) and 6,6-dimethyl-5H-benzimidazolyl[1,2-c]quinazoline (L4) are reported. Cobalt(II) [Co(L1)2(CH3COO)2] (1) and nickel(II) [Ni(L1)2(CH3COO)2] (2) acetate coordination compounds of L1 are discussed. The synthesis and the X-ray crystal structure of the new 1-(S-methylcarbodithioate)-2-aminobenzimidazole (L2) is informed, together with its cobalt(II) [Co(L2)2Cl2] (3), [Co(L2)2Br2] (4) and zinc(II) [Co(L2)2Cl2] (5), [Zn(L2)2Br2] (6) coordination compounds. In these compounds the imidazolic nitrogen is coordinated to the metal center, while the ArNH2 and the S-methylcarbodithioate groups do not participate as coordination sites. A co-crystal of L1 and L2 is analyzed. Structural analyses of the coordination compounds of L3 showed that this ligand behaves as a bidentate ligand through the aniline and the imidazole groups forming six membered rings in the cobalt(II) [Co(L3)Cl2] (7) and zinc(II) [Zn(L3)Cl2] (8) compounds, as well as the nickel(II) nitrate [Ni(L3)2(H2O)2](NO3)2 (9). The quinazoline L4 was produced by insertion of one acetone molecule and water elimination in L3, its X-ray crystal diffraction analysis, as well as that of its zinc(II) coordination compound [Zn(L4)2Cl2] (10), are discussed.  相似文献   

17.
The synthesis, structure and reactivity of several diiminate ligands are presented. The syntheses of five representative β-diiminate (BDI) zinc alkyl complexes and one β-oxo-δ-diiminate (BODDI) zinc alkyl are described. BDI ligands with varying backbone and N-aryl substituents display different solid state structures. [(BDI)ZnR] are synthesized by the reaction of (BDI)H with ZnR2 in quantitative yield. Previously reported (BDI-1)ZnEt is a three-coordinate monomer in the solid state whereas [(BDI-3)ZnEt] [(BDI-3)=2-((2,6-diisopropylphenyl)amido)-3-cyano-4-((2,6-diisopropylphenyl)imino-2-pentene] and [(BDI-4)ZnEt] [(BDI-4)=2-((2,6-diethylphenyl)amido)-3-cyano-4-((2,6-diethylphenyl)imino-2-pentene] form one dimensional coordination polymers. The bimetallic complex [(BODDI-1)(ZnEt)2] [(BODDI-1)=2,6-bis((2,6-diisopropylphenyl)amido)-2,5-heptadien-4-one] is prepared through the reaction of (BODDI-1)H2 with two equivalents ZnEt2. Both [(BDI)ZnEt] and [(BODDI)ZnEt] complexes react with acetic acid to give the acetate complexes in moderate to high yields, offering a superior synthetic route to these complexes. [(BDI)ZnR] [BDI=(BDI-3) or 1,1,1-trifluoro-2-((2,6-diisopropylphenyl)amido)-4-((2,6-diethylphenyl)imino-2-pentene), (BDI-5)] complexes react with MeOH to produce [{(BDI)Zn(μ-OMe)}2Zn(μ-OMe)2] in moderate yields. The molecular structures of [(BDI-3)ZnEt], [(BDI-4)ZnEt], [(BODDI-1)(ZnEt)2], [(BODDI-1)Zn2(μ-OAc)2], [{(BDI-3)Zn(μ-OMe)}2Zn(μ-OMe)2] and [{(BDI-5)Zn(μ-OMe)}2Zn(μ-OMe)2] have been determined by X-ray diffraction.  相似文献   

18.
The syntheses of ball-type dinuclear Zn(II) and Mg(II) phthalocyanines containing four 4,4′-isopropylidendioxydiphenyl substituents at the peripheral and non-peripheral positions are presented. The structures of the synthesized compounds were characterized using elemental analyses, and UV-Vis, FT-IR, 1H NMR and mass spectroscopies. The ΦF values were 0.14, 0.11, 0.22, 0.15 and ΦT values were 0.84, 0.88, 0.62, 0.74, for 6-9, respectively. The largest triplet yields were observed for the non-peripherally substituted complexes 6 and 7, showing that non-peripheral substitution favors increased population of the triplet state. All complexes showed reasonably long triplet lifetimes with τT 510, 310, 910 and 350 μs in DMSO, respectively.  相似文献   

19.
The pentadentate ligand N,N′-bis(2-hydroxyphenyl)-pyridine-2,6-dicarboxamide (POPYH4) has been used to prepare a variety of new complexes [HNEt3]2[Zn4Cl(POPYH)3] (2), [HNEt3][PdCl(POPYH2)] (3), [HNEt3][Ni(POPYH)] (4) and K[Ni(POPYH)] (5) which show the versatility of this multidentate ligand. The complexes have been characterised spectroscopically and their molecular and crystal structures have been determined by single crystal X-ray diffraction techniques. In these complexes the ligand exhibits different modes of coordination towards different transition metal ions. The structure of triethylammonium salt of the Zn(II) dianion 2 consists of an unusual tetra-zinc core supported by three POPYH ligands each one of which links two adjacent zinc centres through two oxygen and two nitrogen donor atoms. The salt of the square planar Pd(II) anion 3 contains one POPYH2 ligand which coordinates in a tridentate fashion through the two deprotonated amido groups and by the central pyridine nitrogen donor. The two Ni(II) salts 4 and 5 contain the same [Ni(POPYH)] anion in which the square planar Ni(II) centre is chelated by a POPYH ligand through the two deprotonated amido nitrogen atoms, the pyridine nitrogen and a deprotonated hydroxyl group.  相似文献   

20.
9,21,22-Triaza-2,11-dithia[3.3](2,6)pyridino(2,9)phenanthrolinophane 4 was prepared from a cyclization reaction of 2,6-bis(mercaptomethyl)pyridine 5 and 2,9-bis(bromomethyl)phenanthroline 6. Results from 1H NMR analysis are inconclusive but those derived from semi-empirical molecular orbital PM3 calculations support a preference for a syn conformation for 4. The conformation barrier for interconversion between two syn isomers of 4 was estimated to be 36.5 kJ mol−1 on the basis of a dynamic 1H NMR study. The manganese(II) and zinc(II) complexes of 4 were prepared and the metal to ligand ratios were found to be 1:1 and 2:1, respectively, by elemental analyses. Results from an 1H NMR analysis of the zinc(II) complex of 4 suggest that only the two nitrogen atoms of the phenanthroline moiety participate in the co-ordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号