首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Microbial lipase from Candida rugosa immobilized into porous chitosan beads was tested for esterification selectivity with butanol and different organic acids (C2–C12), and butyric acid and different aliphatic alcohols (C2–C10). After 24 h, the acids tested achieved conversions of about 40–45%. Acetic acid was the only exception, and in this case butanol was not consumed. Different alcohols led to butyric acid conversions >40%, except for ethanol, in which case butyric acid was converted only 26%. The system’s butanol and butyric acid were selected for a detailed study by employing an experimental design. The influence of temperature, initial catalyst concentration, and acid:alcohol molar ratio on the formation of butyl butyrate was simultaneously investigated, employing a 23 full factorial design. The range studied was 37–50°C for temperature (X1), 1.25–2.5% (w/v) for the catalyst concentration (X2), and 1 and 2 for the acid:alcohol molar ratio (X3). Catalyst concentration (X2) was found to be the most significant factor and its influence was positive. Maximum ester yield (83%) could be obtained when working at the lowest level for temperature (37°C), highest level for lipase concentration (2.5% [w/v]), and center level of acid:alcohol molar ratio (1.5). The immobilized lipase was also used repeatedly in batch esterification reactions of butanol with butyric acid, revealing a half-life of 86 h.  相似文献   

2.
The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME) as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD) after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.  相似文献   

3.
Candida rugosa lipase was covalently immobilized on silanized controlled poresilica (CPS) previously activated with glutaraldehyde in the presence of several additives to improve the performance of the immobilized from in long-term operation. Proteins (albumin and lecithin) and organic molecules (β-cyclodextrin and polyethylene glycol [PEG]-1500) were added during the immobilization procedure, and their effects are reported and compared to the behavior of the immobilized biocatalyst in the absence (lacking) of additive. The selection of the most efficient additive at different lipase loadings (150–450 U/g of dry support) was performed by experimental design. Two 22full factorial designs with two repetitions at the center point were employed to evaluate the immobilization yield. A better, stabilizing effect was found when small amounts of albumin or PEG-1500, were added simul-taneou sly to the lipase on to the support. The catalytic activity had a maximum (193 U/mg) for lipase loading of 150 U/g of dry support using PEG-1500 as the stabilizing additive. This immobilized system was used to perform esterification reactions under repeated batch cycles (for the synthesis of butyl butyrate as a model). The half-life of the lipase immobilized on CPS in the presence of PEG-150 was found to increase fivefold compared with the control (immobilized lipase on CPS without additive).  相似文献   

4.
Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.  相似文献   

5.
In order to illustrate the underlining mechanism of the effect of high pressure on lipases from different resources, the influence of compressed carbon dioxide treatment on the esterification activities and conformation of the three lipases Candida rugosa lipase (CRL), Pseudomonas fluorescens lipase, and Rhizopus oryzae lipase was investigated in the present work. The results showed that the lipases activities were significantly enhanced in most of high-pressure treatments, except the pressure had a negative effect on CRL activity in supercritical condition. Mild depressurization rate could remain the lipase’s activity by protecting its rigid structure under supercritical fluid. Conformational analysis by Fourier transform-infrared spectrometry and fluorescence emission spectra revealed that the variances of lipase activity after high-pressure treatment were correlated with the changes of its α-helix content and fluorescence intensity. Additionally, transesterification catalyzed by three lipases in supercritical carbon dioxide were conducted, and 87.2 % biodiesel conversion was obtained by CRL after 3 h, resulting in a great reduction of reaction time.  相似文献   

6.
This study investigated the optimization of the enzymatic processing conditions for polylactic acid (PLA) fibers using enzymes consisting of lipases originating from different sources. The hydrolytic activity was evaluated taking into consideration the pH, temperature, enzyme concentration, and treatment time. The structural change of the PLA fibers was measured in the optimal treatment conditions. PLA fiber hydrolysis by lipases was maximized for lipase from Aspergillus niger at 40 °C for 60 min at pH 7.5 with 60% (owf) concentration, for lipase from Candida cylindracea at 40 °C for 120 min at pH 8.0 with 70% (owf) concentration, and for lipase from Candida rugosa at 45 °C for 120 min at pH 8.0 with 70% (owf) concentration. There was a change in protein absorbance of the treatment solution before and after all lipase treatments. The analyses of the chemical structure change and structural properties of the PLA due to lipase treatment was confirmed by tensile strength, differential scanning calorimetry, wide-angle X-ray scattering diffractometry, Fourier transform infrared spectroscopy, and scanning electron microscopy.  相似文献   

7.
Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate)(poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90∶10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50∶50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.  相似文献   

8.
《Tetrahedron: Asymmetry》2007,18(2):181-191
This research concentrates on the enantioselectivities of lipase-catalysed reactions with methyl esters of 2-piperidylacetic acid and 3-piperidinecarboxylic acid derivatives. N-Acetylated 2-piperidylacetic acid methyl ester displayed good enantioselectivity (E = 66) in a 1:1 mixture of diisopropyl ether and butyl butanoate in the presence of lipase PS-C II from Burkholderia cepacia. The reaction is known as interesterification with butyl butanoate rather than alcoholysis with the butanol, because butyl butanoate has to be first hydrolysed or go through alcoholysis with MeOH in order to release butanol. Other N-protective groups (Boc, Ns, Fmoc and Bzn) gave excellent enantioselectivity (E >200) under the same conditions, and a gram-scale resolution was performed with N-Boc-2-piperidylacetic acid methyl ester. Reaction with a 3-piperidylcarboxylic acid derivative took place with disappointingly low enantioselectivity (E = 4), with Candida antarctica lipase B being the best of the lipases screened.  相似文献   

9.
Water Activity Dependence of Lipases in Non-aqueous Biocatalysis   总被引:1,自引:0,他引:1  
Eleven lipases are tested and it was found that lipases can be divided into three types according to water activity dependence. The first type is lipase that has low water activity dependence and works in a low water activity, its performance changes little with the change of water activity. The optimum water activity is 0.19 and Newlase F (Rhizopus niveus), lipase FAP-15 (Rhizopus oryzae) belong to this type. The second type is lipase that has medium water activity dependence and its performance changes with the change of water activity. Most lipases belong to this type and the optimum water activity in this type is about 0.60. The third type is lipase that has a high water activity dependence and works only in a high water activity (a w  > 0.75). WGL (wheat germ) belongs to this type and the optimum water activity is 0.90. The relationship between enantioselectivity and water activity is also discussed and the enantioselectivity seems to be independent of water activity. And we also compared the two control methods of water activity, it was found that the method which add solid salt hydrates to the reaction mixture (method II) is more stable and effective throughout the reaction than the method that pre-equilibrate via the vapor phase (method I). The addition concentration of salt hydrates is also investigated and the optimum concentration is 1 g/l.  相似文献   

10.
Candida rugosa lipase was encapsulated within a chemically inert sol–gel support prepared by polycondensation with tetraethoxysilane and octyltriethoxysilane in the presence of β-cyclodextrin-based polymer. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yield of the encapsulated lipase was 65 U/g, which is 7.5 times higher than that of the covalently immobilized lipase. The β-cyclodextrin-based encapsulated lipases had higher conversion and enantioselectivity compared with covalently immobilized lipase. The study confirms an excellent enantioselectivity (E >300) for the encapsulated lipase with an enantiomeric excess value of 98% for S-naproxen.  相似文献   

11.
An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.  相似文献   

12.
The synthesis of both the (R)- and (S)-enantiomers of the natural product rugulactone has been achieved. Candida rugosa lipase hydrolyzes the butyrate ester of the protected 3-hydroxy homoallylic alcohol with very high enantioselectivity (E = 244) and provides the key intermediates with high enantiomeric purity (ee 98–99%) and excellent yields.  相似文献   

13.
One relevant limitation hindering the industrial application of microbial lipases has been attributed to their production cost, which is determined by the production yield, enzyme stability among other. The objective of this work was to evaluate the concentration and immobilization of lipase extracts from Penicillium brevicompactum obtained by solid-state fermentation of babassu cake and castor bean cake. The precipitation with ammonium sulfate 60% of saturation of crude extract obtained with babassu cake as raw material showed an enhancement in hydrolytic and esterification activities from 31.82 to 227.57 U/g and from 170.92 to 207.40 U/g, respectively. Concentrated lipase extracts showed preference to medium-chain triglycerides and fatty acids. It is shown that the enzyme activity is maintained during storage at low temperatures (4 and −10°C) for up to 30 days. Higher esterification activities were achieved when the lipase extract was immobilized in sodium alginate and activated coal.  相似文献   

14.
Different fed-batch cultures of Candida rugosa were carried out using oleic acid as the only carbon source. The crude lipases obtained under several operational conditions and downstream processes showed different catalytic activity and isoenzymes ratio. This fact implied that the performance of the lipase produced could be modulated by using different operational fermentation conditions. These powders were compared with commercial lipase from Sigma (St. Louis, MO) in hydrolysis and synthesis reactions. Especially interesting was the fact that the enantioselectivity of a crude lipase was higher than that observed with commercial lipase in the resolution of recemic Ketoprofen. In addition, response of both lipases in the presence of water was different.  相似文献   

15.
The extracellular lipase from Streptomyces thermocarboxydus ME168 was purified to 9.5-fold with 20% yield, following concentration by acetone precipitation, ion exchange chromatography (Resource Q) and gel filtration chromatography (Superdex 200), respectively. The purified enzyme had an apparent molecular mass of 21 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of the lipase was ASDFDDQILG and was different from most other reported lipase. The enzyme showed maximum activity at 50 °C with the half-life of 180 min at 65 °C. It showed high stability at a broad pH range of 5.5–9.5 and was thermostable at the temperature range of 25–60 °C. The K m and V max were 0.28 mM and 1,428 U/mg, respectively, using p-nitrophenyl palmitate as substrate. It was active toward p-nitrophenyl ester with medium to long acyl chain (C8–C16). Lipase activity was inhibited by Zn2+, dithiothreitol (DTT), EDTA and some organic solvents, e.g., ethanol, acetone, dioxane, acetronitrile, tert-butanol and pyridine. Immobilized crude lipase of S. thermocarboxydus ME168 on celite could be used to synthesize sugar esters from glucose and vinyl acetate, vinyl butyrate or vinyl caproate in tert-butanol:pyridine (55:45 v/v) at 45 °C with conversion yields of 93, 67 and 55%, respectively.  相似文献   

16.
Candida rugosa lipase was immobilized by covalent binding on controlled poresilica (CPS) using glutaraldehyde ascross-linking agent under aqueous and nonaqueous conditions. The immobilized C. rugosa was more active when the coupling procedure was performed in the presence of a nonpolar solvent, hexane. Similar optima pH (7.5–8.0) was found for both free and immobilized lipase. The optimum temperature for the immobilized lipase was about 10°C higher than that for the free lipase. The thermal stability of the CPS lipase was alsogreater than the original lipase preparation. Studies on the operational stability of CPS lipase revealed good potential for recycling under aqueous (olive-oil hydrolysis) and nonaqueous (butyl butyrate synthesis) conditions.  相似文献   

17.
The synthesis of isoamyl laurate and isoamyl stearate was studied in supercritical carbon dioxide with three lipases, Novozym 435, Lipolase 100T, and Candida rugosa. The maximum conversion of 37% and 53%, respectively for isoamyl laurate and isoamyl stearate was obtained when Novozym 435 was used. The effect of various parameters such as molar ratio of alcohol to acid, presence of water, time and temperature was investigated. An optimum temperature of 40–45°C was observed for all reactions. The kinetics of reactions was fast and equilibrium was achieved in 2–3 h. Although the presence of excess alcohol did not reduce conversion, excess water reduced conversion significantly.  相似文献   

18.
《Tetrahedron: Asymmetry》1998,9(2):203-212
Three methods for the synthesis of the deoxy sugar amicetose (2,3,6-trideoxy-d-erythro-hexopyranoside) are described. All three utilize the known dihydropyran 2-isobutoxy-6-methyl-2,3-dihydro-4H-pyran as an intermediate. Asymmetric hydroboration of the dihydropyran with IpcBH2 gave enantiomerically enriched isobutyl α and β-amicetosides. Hydroboration with borane–tetrahydrofuran followed by derivatization of the major product (β-anomer) with R-(−)-1-(1-naphthyl)ethylisocyanate gave diastereomeric carbamates which were separated and converted to isobutyl β-d and β-l-amicetosides having high optical purity. Racemic isobutyl β-amicetosides were also resolved by enzymatic transesterification using lipase and an acyl transfer reagent. Porcine pancreatic lipase and lipases from Candida rugosa and Pseudomonas sp. were evaluated in the presence of either vinyl acetate, vinyl butyrate, or trifluoroethyl butyrate as acylating agents. A GC-based method for determining enantiomeric purity of amicetose derivatives was developed.  相似文献   

19.
Several phenylalanine analogs have been synthesized through a four-step route starting from easily available ethyl acetamidocyanoacetate. In a first reaction, and making use of phase transfer catalysts, this compound reacted with several alkyl halides, being benzyltributylammonium chloride identified as the best one for the production of a series of quaternary amino acids in moderate to excellent yields (52–95%). Then, the corresponding N-acetyl-phenylalanine methyl and allyl ester derivatives were obtained through acidic hydrolysis, esterification, and N-acetylation. Rhizomucor miehei lipase was found as a versatile enzyme for the resolution of these amino esters, finding the best results through interesterification reactions with butyl butyrate in acetonitrile. A great influence in the stereoselectivity was found depending on the chemical structure of the compound, achieving for the non- or para-substituted in the phenyl ring excellent stereoselectivities, being moderate for the meta-nitro derivative, while the ortho-nitro amino ester did not react.  相似文献   

20.
《Tetrahedron: Asymmetry》2006,17(14):2069-2073
Four commercially available lipases and two native lipases from Aspergillus niger AC-54 and Aspergillus terreus AC-430 were used for the resolution of (RS)-Ibuprofen in systems containing the ionic liquids [BMIM][PF6] and [BMIM][BF4]. The lipases showed higher conversion in a two-phase system using [BMIM][PF6] and isooctane compared to that in pure isooctane. Although the best enzyme was a commercially available lipase from Candida rugosa (E = 8.5), another native lipase, produced in our laboratory, from A. niger gave better enantioselectivity (E = 4.6) than the other lipases tested (E = 1.9–3.3.). After thorough optimization of several reaction conditions (type and ratios of isooctane/ionic liquid, amount of enzyme, and reaction time), the E-value of A. niger lipase (15% w/v) could be duplicated (E = 9.2) in a solvent system composed of [BMIM][PF6] and isooctane (1:1) after 96 h of reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号