首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 971 毫秒
1.
Isolation of four optically active isomers of the 5-substituted 2,2′-bipyridine complexes [Co(cbpy)3]3+ (cbpy?=?5-carboxy-2,2′-bipyridine) was achieved using cation-exchange column chromatography (SP-Sephadex C-25) eluting with either sodium (?)-O,O′-dibenzoyltartrate or sodium ((+)-tartrato)antimonate(III). Structure optimization and molecular dynamics (MD) simulations of the system consisting of the propeller-type complex fac-[Co(cbpy-H)3] (cbpy-H?=?2,2′-bipyridine-5-carboxylate anion) and 80 water molecules were performed using the AMBER?6 program. Results of the MD simulation revealed that distinct translating and rotating behaviors can be obtained in this complex in aqueous solution upon IR irradiation.  相似文献   

2.
The gold sulfonium benzylide complexes [( P1 )AuCHPh(SR1R2)]+ {B[3,5-CF3C6H3]4} [ P1 =P(tBu)2o-biphenyl; R1, R2=-(CH2)4- ( 1 a ); R1=Et, R2=Ph ( 1 b ); R1=R2=Ph ( 1 c )] were synthesized by reaction of the gold α-chloro benzyl complex ( P1 )AuCHClPh with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and excess sulfide. Complexes 1 undergo efficient benzylidene transfer to alkenes and DMSO under mild conditions without external activation. Kinetic analysis of the reaction of 1 c with styrene was consistent with the intermediacy of the cationic gold benzylidene complex [( P1 )AuCHPh]+ ( I ).  相似文献   

3.
The syntheses and characterization of four new linear pentadentate ligands and their CoIII complexes are described: N,N′-[(pyridine-2,6-diy)bis(methylene)]bis[sarcosine] (sarmp), N,N′-[(pyridine-2,6-diyl)bis(methylene)]bis[(R)- or (S)-proline] ((R,R)- or (S,S)-promp), N,N′-[(pyridine-2,6-diyl)bis(methylene)]bis[N-(methyl)-(R)- or (S)-alanine] ((R,R)- or (S,S)-malmp); 2,2′-[pyridine-2,6-diyl]bis[(S)- or rac-N-(acetic acid)pyrrolidine] ((S,S)- or rac-bapap). The complexes were characterized and, with but one exception, complex formation is stereospecific: Δ-exo-(R,R) (or Λ-exo-(S,S)) for promp and Λ-(R,R) (or Δ-(S,S)) for bapap. The exception is [Co((R,R)- or (S,S)-malmp)H2O]ClO4 for which two forms are obtained, to which Λ-endo-(R,R) (or Δ-endo-(S,S)) and, tentatively, Δ-unsymmetric-(R,R)- (or Λ-unsymmetric-(S,S)-) configurations are assigned. X-Ray crystal structures are presented for the complexes [Co(sarmp)H2O]ClO4, [Co((S,S)-promp)H2O]ClO4, [Co(rac-bapap)H2O]ClO4 and endo-[Co(rac-malmp)H2O]ClO4. Ligand acid dissociation and CoII and FeII complex-formation constants are reported.  相似文献   

4.
The preparation and the CD spectra of optically pure (+)-trans-μ-[(1R,4S,5S,6R,7R,8S)-C,5,6,C -η : C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo [2.2.2]octanone)]bis(tricarbonyliron) ((+)- 7 ) and (+)-tricarbonyl[(1S,4S,5S,6R)-C-5,6,C-η-(5,6,7,8,-tetramethylidene-2-bicyclo[2.2.2]octanone)]iron ((+)- 8 ), and of its 3-deuterated derivatives (+)-trans-μ-[(1R,3R,4S,5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C-η-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]-(octanone)]bis(tricarbonyliron) ((+)- 11 ) and (+)-tricarbonyl[(1S,3R,4S,5S,6R)-C-5,6,C- η-(5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone)]iron ((+)- 12 ) are reported. The chirality in (+)- 7 and (+)- 8 is due to the Fe(CO)3 moieties uniquely. The signs of the Cotton effects observed for (+)- 7 and (+)- 8 obey the octant rule (ketone n→π*CO transition). Optically pure (?)-3R-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone ((?)- 10 ) was prepared. Its CD spectrum showed an ‘anti-octant’ behaviour for the ketone n→π*CO transition of the deuterium substituent. The CD spectra of the alcoholic derivatives (?)-trans-μ-[(1R,2R,4S, 5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]bis(tricarbonyliron) ((?)- 2 ) and (?)-tricarbonyl- [(1S,2R,4S,5S,6R)- C,5,6,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]iron ((?)- 3 ) and of the 3-denterated derivatives (?)- 5 and (?)- 6 are also reported. The CD spectra of the complexes (?)- 2 , (?)- 3 , (+)- 7 , and (+)- 8 were solvent and temperature dependent. The ‘endo’-configuration of the Fe(CO)3 moiety in (±)- 8 was established by single-crystal X-ray diffraction.  相似文献   

5.
Epoxidation of (?)-(1R,2R,4R)-2-endo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((?)-5) followed by saponification afforded (+)-(1R,4R,5R,6R)-5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ((+)-7). Reduction of (+)-7 with diisobutylaluminium hydride (DIBAH) gave (+)-1,3:2,5-dianhydroviburnitol ( = (+)-(1R,2R,3S,4R,6S)-4,7-dioxatricyclo[3.2.1.03,6]octan-2-ol; (+)-3). Hydride reductions of (±)-7 were less exo-face selective than reductions of bicyclo[2.2.1]heptan-2-one and its derivatives with NaBH4, AlH3, and LiAlH4 probably because of smaller steric hindrance to endo-face hydride attack when C(5) and C(6) of the bicyclo-[2.2.1]heptan-2-one are part of an exo oxirane ring.  相似文献   

6.
Three Ru(II) complexes [Ru(bpy)2(1-IQTNH)](ClO4)2 (1), [Ru(bpy)2(2-QTNH)](ClO4)2 (2) and [Ru(bpy)2(3-IQTNH)](ClO4)2 (3) (bpy = 2,2′-bipyridine, 1-IQTNH = 6-(isoquinolin-1-yl)-1,3,5-triazine- 2,4-diamine, 2-QTNH = 6-(quinolin-2-yl)-1,3,5-triazine- 2,4-diamine, 3-IQTNH = 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The electrochemical and spectroscopic properties of the complexes differ from those of [Ru(bpy)3]2+ owing to the structural differences between the ligands and their complexes.  相似文献   

7.
A rare example of a mononuclear complex [(bpy)2Ru(L1?H)](ClO4), 1 (ClO4) and dinuclear complexes [(bpy)2Ru(μ‐L1?2H)Ru(bpy)2](ClO4)2, 2 (ClO4)2, [(bpy)2Ru(μ‐L2?2H)Ru(bpy)2](ClO4)2, 3 (ClO4)2, and [(bpy)2Ru(μ‐L3?2H)Ru(bpy)2](ClO4)2, 4 (ClO4)2 (bpy=2,2′‐bipyridine, L1=2,5‐di‐(isopropyl‐amino)‐1,4‐benzoquinone, L2=2,5‐di‐(benzyl‐amino)‐1,4‐benzoquinone, and L3=2,5‐di‐[2,4,6‐(trimethyl)‐anilino]‐1,4‐benzoquinone) with the symmetrically substituted p‐quinone ligands, L, are reported. Bond‐length analysis within the potentially bridging ligands in both the mono‐ and dinuclear complexes shows a localization of bonds, and binding to the metal centers through a phenolate‐type “O?” and an immine/imminium‐type neutral “N” donor. For the mononuclear complex 1 (ClO4), this facilitates strong intermolecular hydrogen bonding and leads to the imminium‐type character of the noncoordinated nitrogen atom. The dinuclear complexes display two oxidation and several reduction steps in acetonitrile solutions. In contrast, the mononuclear complex 1 + exhibits just one oxidation and several reduction steps. The redox processes of 1 1+ are strongly dependent on the solvent. The one‐electron oxidized forms 2 3+, 3 3+, and 4 3+ of the dinuclear complexes exhibit strong absorptions in the NIR region. Weak NIR absorption bands are observed for the one‐electron reduced forms of all complexes. A combination of structural data, electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations is used to elucidate the electronic structures of the complexes. Our DFT results indicate that the electronic natures of the various redox states of the complexes in vacuum differ greatly from those in a solvent continuum. We show here the tuning possibilities that arise upon substituting [O] for the isoelectronic [NR] groups in such quinone ligands.  相似文献   

8.
Metal Complexes of Dyes. IX. Transition Metal Complexes of Curcumin and Derivatives The bidentate monoanions of curcumin[CU, (1, 7-bis(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione)], diacetylcurcumin[DACU, (1,7-bis(4-acetyl-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione)], dihydroxycurcumin[DHCU, (1,7-bis(4-hydroxiphenyl)-hepta-1,6-diene-3,5-dione)], dimethylcurcumin [DMCU, (1,7-bis(3,4-dimethoxyphenyl)-hepta-1, 6-diene-3,5-dione)] and trimethylcurcumin[TMCU, (1,7-bis(3,4-dimethoxyphenyl)-4-methylhepta-1,6-diene-3,5-dione)] form with chloro bridged complexes [(R3P)MCl2]2 (M?Pd, Pt; R?phenyl, n-butyl, ethyl, tolyl), [η5-C5Me5)MCl2]2 (M?Rh, Ir), [(η6-p-cymene)RuCl2]2, [(η3-C3H5)PdCl]2, di-μ-chlorobis[N-(diphenylmethylene)-glycinethylester-(C,N)]-dipalladium(II) and with [(η5-C5Me5)Co(CO)I2] monochelate dye complexes. The structure of [(η6-p-cymene)(Cl)Ru(DMCU)] was determined by X-ray diffraction. The dichelates (DMCU)2M with M?Cu, Ni, (CU)2Pd and the trichelate (CU)3Fe were obtained. Cationic bipyridine copper(II) complexes with CU, DHCU, and DMCU were sythesized by treating the dye ligands with copper(II) acetate, 2,2′-bipyridine and ammoniumtetrafluoroborate. In comparison to the free 1.3-diketones the dye complexes show a bathochromic shift in the UV/VIS spectra.  相似文献   

9.
Five oxovanadium(IV) dinuclear complexes described by the overall formula [(VO)2(IA)L2SO4, where IA repents the dianion of iodanilic acid and L denotes 2, 2′-bipyridine (bpy); 4,4′-dimethy12,2′-bipyridine (Meo-bpy); 1,10-phenanthroline (phen); 4,7-diphenyl-l, 10-phenanthroline (Ph2-phen) and 5-nitro-1, 10-phenanthroline (NO2-phen), have been synthesized and characterized by elemental analyses, molar conductivity and roomtemperature magnetic moment measurements, IR and electronic spectral studies. It is proposed that these complexes have IA-bridged structures and consist of two oxovanadium(IV) ions each in a square pyramidal environment. The complexes (VO)2(IA) (bpy)2]SO4, (1) and[(VO)2( IA) (phen)2 ]SO4 (2) were further characterized by variable temperature (4.2–300 K) magnetic susceptibility measurements and the observed data were fitted to the modified Bleaney-Bowers equation by the least-squares method, giving the exchange integral J = - 2.15 m?1 for 1 and J = - 9.88 cm?1 for 2. This result indicates that there is a weak antiferromagnetic spin-exchange interaction between the two VO2+ ions within each molecule.  相似文献   

10.
The organotin(IV) chlorides RnSnCl4−n (n = 3, R = Ph, PhCH2, n−Bu; and n =2, R = n−Bu, Ph, PhCH2) react with 4,4′‐bipyridine (4′4‐bpy) to give [(Ph3SnCl)2(4,4′‐bpy)1.5(C6H6)0.5] ( 1 ), [(PhCH2)3‐ SnCl]2 (4,4′‐bpy) ( 2 ), [(n−Bu)3SnCl]2(4,4′‐bpy) ( 3 ), [(n−Bu)2SnCl2(4,4′‐bpy)] ( 4 ), [Ph2SnCl2(4,4′‐bpy)] ( 5 ), and [(PhCH2)2SnCl2(4,4′‐bpy)] ( 6 ). The new complexes have been characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR spectroscopy. The structures of ( 1 ), ( 2 ), ( 4 ), and ( 6 ) have been determined by X‐ray crystallography. Crystal structures of ( 1 ) and ( 2 ) show that the coordination number of tin is five. In complex ( 1 ), two different molecules exist: one is a binuclear molecule bridged by 4,4′‐bpy and another is a mononuclear one, only one N of 4,4′‐bpy coordinate to tin. Complex ( 2 ) contains an infinite 1‐D polymeric binuclear chain by weak Sn…Cl intermolecular interactions with neighboring molecules. In the complexes ( 4 ) and ( 6 ), the tin is six‐coordinate, and the 4,4′‐bpy moieties bridge adjacent dialkyltin(IV)dichloride molecules to form a linear chain. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:338–346, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20016  相似文献   

11.
Self-assembly of 4,4′-bipyridine (bpy) with arene-ruthenium building blocks and 2,2′-bisbenzimidazole (H2BiBzIm) in the presence of AgOTf (OTf = OSO2CF3) afforded tetranuclear cations of the type [Ru4(η6-arene)4(bpy)2(BiBzIm)2]4+ (arene = p-iPrC6H4Me 1, C6Me6 2), while similar reactions by use of [(η6-C6Me6)Ru(μ-Cl)Cl]2 and excess AgOTf led to isolation of a cationic coordination network {[Ru4(η6-C6Me6)4(bpy)2(BiBzIm)2·Ag2(OTf)4]2+}n (3), which could also be obtained by treatment of [2][OTf]4 with AgOTf in methanol. Complex 3 is constructed by π coordination of BiBzIm(η2-carcon) with Ag(I). The coordination geometry around the silver(I) ion is pseudo-tetrahedral (taking the C=C group as one ligand). Self-assembly of only two components: [(η6-C6Me6)Ru(μ-Cl)Cl]2 reacted with the 3-pyridyl-bian (mPy-bian) linker in the presence of limited AgOTf to give a chloro-bridged metalla-rectangle [Ru4(η6-C6Me6)4(μ-Cl)4(mPy-bian)2Ag]5+ (4), which enclosed a silver in the center. The coordination geometry around silver(I) in 4 is unusual square planar. The molecular structures of 1–4 were confirmed by X-ray crystallography along with other spectroscopic properties.  相似文献   

12.
Chloro-complexes [OsCl(N-N)P3]BPh4 (12) [N-N=2,2-bipyridine (bpy) and 1,10-phenanthroline (phen); P=P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl4(N-N) to react with zinc dust in the presence of phosphites. Treatment of the chloro-complexes 12 with NaBH4 yielded, in the case of bpy, the hydride [OsH(bpy)P3]BPh4 (4) derivatives. Mono-phosphite [OsCl(bpy)2P]BPh4 (3) complexes were also prepared by reacting the [OsCl2(bpy)2]Cl compound with zinc dust in the presence of phosphite. Protonation reaction of the hydride [OsH(bpy)P3]+ (4) cations with Brønsted acid was studied and led to thermally unstable (above 0 °C) dihydrogen [Os(η2-H2)(bpy)P3]2+ (4*) derivatives. The presence of the H2 ligand is supported by variable-temperature NMR spectra and T1min measurements. Carbonyl [Os(CO)(bpy){P(OEt)3}3](BPh4)2 (5), nitrile [Os(CH3CN)(bpy){P(OEt)3}3](BPh4)2 (6), and hydrazine [Os(bpy)(NH2NH2){P(OEt)3}3](BPh4)2 (7) complexes were prepared by substituting the H2 ligand in the η2-H2 (4*) derivatives. Aryldiazene complex [Os(C6H5NNH)(bpy){P(OEt)3}3](BPh4)2 (8) was also obtained by allowing the hydride [OsH(bpy)P3]BPh4 to react with phenyldiazonium cation.  相似文献   

13.
Three azido-bridged copper(II) complexes, [Cu2(L1)21,1,3-N3)2] n ·2nH2O (1), [Cu4(L2)41,1-N3)21,1,3-N3)2] n (2), and [Cu2(L3)21,1-N3)2] (3), where L1, L2, and L3 are the deprotonated forms of 4-bromo-2-[(2-methylaminoethylimino)methyl]phenol (HL1), 4-bromo-2-[(2-ethylaminoethylimino)methyl]phenol (HL2), and 4-bromo-2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and structurally characterized by single-crystal X-ray diffraction analysis and IR spectra. The slight differences in the terminal groups of the Schiff bases lead to different bridging modes of the azido groups.  相似文献   

14.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

15.
Ethyl and tert-butyl azidoformate added to 7-oxabicyclo[2.2.1]hept-5-en-2-one dimethyl ( 5 ) and dibenzyl ( 6 ) acetals to give mixtures of regioisomeric triazolines. The latter gave the corresponding aziridines (6,6-dialkoxy-3-aza-8-oxatricyclo[3.2.1.02,4]octane-3-carboxylates 15 , 19 , 23 , and 27 and 31 ) on UV irradiation. In the presence of protic acids, the aziridines were rearranged into protected amines ([3-endo-alkoxy-5-oxo-7-oxabicyclo[2.2.1]hept-2-exo-yl]carbamates 16 , 20 , 24 , and 28 and 33 ). Using (+)-(1R, 4R)-5,5-bis(benzyloxy)7-oxabicyclo[2.2.1]hept-2-ene((+)- 6 ) derived from furan and l-cyanovinyl (1S)-camphanate, the method was applied to prepare 2-O-benzyl-3-[(tert-butoxy)carbonyiamino]-5-O-(3-chlorobenzoyl)-3-deoxy-β-D -altrofuranurono-6,1-lactone ((?)- 37 ). This compound was converted to methyl 3-amino-3-deoxy-α-D-altropyranoside hydrochloride ( 44 ) and several derivatives.  相似文献   

16.
Two copper(II) complexes of disubstituted 2,2′-bipyridine (bpy = 2, 2′-bipyridine) with tetraalkylammonium groups, [Cu(L1)2Br](ClO4)5·2H2O (1) and [Cu(L2)2Br](ClO4)5·H2O (2) (L1 = [4, 4′-(Et3NCH2)2-bpy]2+, L2 = [4, 4′-((n-Bu)3NCH2)2-bpy]2+), have been synthesized and characterized. X-ray crystallographic study of 1 indicates that Cu(II) is a distorted trigonal bipyramidal or square pyramid. DNA binding of both complexes was studied by UV spectroscopic titration. In the presence of reducing reagents, the cleavage of plasmid pBR322 DNA mediated by both complexes was investigated and efficient oxidative cleavage of DNA was observed. Mechanistic study with reactive oxygen scavengers indicates that hydrogen peroxide and singlet oxygen participate in DNA cleavage.  相似文献   

17.
Hong  Xian-Lan  Chao  Hui  Wang  Xiang-Li  ji  Liang-Nian  li  Hong 《Transition Metal Chemistry》2004,29(5):561-565
Two novel RuII complexes [Ru(dppt)(bpy)Cl]ClO4 (1) and [Ru(pta)(bpy)Cl]ClO4 (2)[dppt, pta and bpy = 3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine, 3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene and 2,2-bipyridine, respectively] were synthesized and characterized by elemental analysis and electrospray mass spectrometry, 1H-n.m.r., and u.v.–vis spectroscopy. The redox properties of the complexes were examined using cyclic voltammetry. Due to the strong -accepting character of asymmetric ligands, the MLCT bands of (1) and (2) are shifted significantly to lower energies by comparison with [Ru(tpy)(bpy)Cl]+.  相似文献   

18.
Chiral (S)-(−)-N-1-cyclohexylethylmaleimide [(S)-CEMI] and (R)-(+)-N-1-cyclohexylethylmaleimide [(R)-CEMI] were synthesized successfully and then polymerized with chiral complexes of (−)-sparteine or (S,S)-(1-ethylpropylidene)bis(4-benzyl-2-oxazoline) [(S,S)-Bnbox] and organometal as initiators in toluene or tetrahydrofuran to obtain optically active polymers. The effects of the polymerization conditions on the optical activity and structure of poly(N-1-cyclohexylethylmaleimide)s were investigated with gel permeation chromatography, circular dichroism, specific rotation, and 13C NMR measurements. Poly[(R)-CEMI] obtained with dimethylzinc (Me2Zn)/(S,S)-Bnbox had the highest specific rotation ([α]435 = +323.7°). Complexes of Bnbox and diethylzinc or Me2Zn were used very effectively as chiral initiators for the asymmetric anionic polymerization of (S)-CEMI and (R)-CEMI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4682–4692, 2004  相似文献   

19.
Six new homobimetallic and heterobimetallic complexes of rhenium(I) and ruthenium(II) bridged by ethynylene spacer [(CO)3(bpy)Re(BL)Re(bpy)(CO)3]2+ [Cl(bpy)2Ru(BL)Ru(bpy)2Cl]2+ and [(CO)3(bpy)Re(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridine, BL = 1,2-bis(4-pyridyl)acetylene (bpa) and 1,4-bis(4-pyridyl)butadiyne (bpb) are synthesized and characterized. The electrochemical and photophysical properties of all the complexes show a weak interaction between two metal centers in heterobimetallic complexes. The excited state lifetime of the complexes is increased upon introduction of ethynylene spacer and the transient spectra show that this is due to delocalization of electron in the bridging ligand. Also, intramolecular energy transfer from *Re(I) to Ru(II) in Re–Ru heterobimetallic complexes occurs with a rate constant 4 × 107 s−1.  相似文献   

20.
Summary Four new trinuclear copper(II) complexes, [Cu(phen)-(NBzIm)] (ClO4) (1), [Cu(bpy)(NBzIm)](ClO4) (2), [Cu-(Me2-bpy)(NBzIm)](Ac)·1/2H2O (3) and [Cu(Me2-bpy)-(Im)](ClO4)·1/2H2O (4) (phen = 1, 10-phenanthroline, bpy = 2,2-bipyridine, NBzIm = 6-nitrobenzimidazolate ion, Im=imidazolate ion) have been prepared and characterized by variable temperature magnetic susceptibility measurements. A weak antiferromagnetic spin exchange interaction operates between copper(II) ions, exchange integrals evaluated as J =-23.82 cm-1 for (1); and J=-21.91 cm-1 for (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号