首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new hexadentate N2O4 donor Schiff bases, H4L1 and H4L2, were synthesized by condensation of 4,6-diacetylresorcinol with glycine and alanine, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic, and mass spectra. Reactions of the Schiff bases with copper(II), nickel(II), and iron(III) nitrates in 1 : 2 molar ratio gave binuclear metal complexes and, in the presence of 8-hydroxyquinoline (8-HQ) or 1,10-phenanthroline (Phen) as secondary ligands (L′), mixed-ligand complexes in two molar ratios 1 : 2 : 2 and 1 : 2 : 1 (L1/L2 : M : L′). The complexes were characterized by elemental and thermal analyses, IR, electronic, mass, and ESR spectral studies, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data reveal that the Schiff-base ligands were dibasic or tetrabasic hexadentate ligands. The coordination sites with the metal ions are two azomethine nitrogens, two oxygens of phenolic groups, and two oxygens of carboxylic groups. Copper(II) complexes were octahedral and square planar while nickel(II) and iron(III) complexes were octahedral. The Schiff bases, H4L1 and H4L2, and some of their metal complexes showed antibacterial activity towards Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Pseudomonas fluorescens and Pseudomonas phaseolicola) bacteria and antifungal activity towards the fungi Fusarium oxysporium and Aspergillus fumigatus.  相似文献   

2.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

3.
The metal complexes of N, N′‐bis (o‐hydroxy acetophenone) propylene diamine (HPPn) Schiff base were supported on cross‐linked polystyrene beads. The complexation of iron(III), copper(II), and zinc(II) ions on polymer‐anchored HPPn Schiff base was 83.4, 85.7, and 84.5 wt%, respectively, whereas the complexation of these metal ions on unsupported HPPn Schiff base was 82.3, 84.5, and 83.9 wt%. The iron(III) complexes of HPPn Schiff base were octahedral in geometry, whereas copper(II) and zinc(II) ions complexes were square planar and tetrahedral. Complexation of metal ions increased the thermal stability of HPPn Schiff base. Catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in the presence of hydrogen peroxide. The polymer‐supported HPPn Schiff base complexes of iron(III) ions showed 73.0 wt% conversion of phenol and 90.6 wt% conversion of cyclohexene at a molar ratio of 1:1:1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 63.8 wt% conversion for phenol and 83.2 wt% conversion for cyclohexene. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 93.1 and 98.3 wt%, respectively with supported HPPn Schiff base complexes of iron(III) ions but was lower with HPPn Schiff base complexes of copper(II) and zinc(II) ions. Activation energy for the epoxidation of cyclohexene and phenol conversion with unsupported HPPn Schiff base complexes of iron(III) ions was 16.6 kJ mol?1 and 21.2 kJ mol?1, respectively, but was lower with supported complexes of iron(III) ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Three ferrocenyl Schiff bases containing a phenol moiety have been formed by 1:1 molar condensation of acetylferrocene with 2‐aminophenol, 2‐amino‐5‐picoline or 2‐amino‐5‐chlorophenol. These ligands form 2:1 complexs with cobalt(II), copper(II), nickel(II), and zinc(II) ions. From the different spectral data, it was found that coordination of the ligands with the metal ions takes place via the azomethine nitrogen atoms and the deprotonated oxygen of the phenol groups. These ligands and their complexes have been characterized by IR, 1H NMR, 13C NMR, UV–Vis spectra, and elemental analysis. The spectral data of the ligands and their complexes are discussed in connection with the structural changes due to complexation. The complexes prepared showed good antimicrobial activity against Escherichia coli, Bacillus subtilus, and Candida albicans. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Cobalt(II) complexes of a new series of unsymmetrical Schiff bases have been synthesized and characterized by their elemental analyses, melting points, magnetic susceptibility, thermogravimetric analysis, differential scanning calorimetry, infrared (IR), and electronic spectral measurements. The purity of the ligands and the metal complexes are confirmed by microanalysis, while the unsymmetrical nature of the ligands was further corroborated by 1H-NMR. Comparison of the IR spectra of the Schiff bases and their metal complexes confirm that the Schiff bases are tetradentate and coordinated via N2O2 chromophore. The magnetic moments and electronic spectral data support square-planar geometry for the cobalt(II) complexes. The complexes were thermally stable to 372.3°C and their thermal decomposition was generally via the partial loss of the organic moiety. The Schiff bases and their complexes were screened for in vitro antibacterial activities against 10 human pathogenic bacteria and their minimum inhibitory concentrations were determined. Both the free ligands and cobalt(II) complexes exhibit antibacterial activities against some strains of the microorganisms, which in a number of cases were comparable with, or higher than, that of chloramphenicol.  相似文献   

7.
A series of Co(II), Ni(II) and Cu(II) complexes, [ML?·?2H2O] of Schiff bases derived from 4,4-diaminodiphenyl sulfone (dapsone) and 8-formyl-7-hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin have been synthesized. From analytical, spectral (IR, NMR, UV-Vis, ESR and FAB mass), and magnetic studies it has been concluded that the metal complexes possess octahedral geometry and are non-electrolytes. The redox behavior of the metal complexes is investigated by cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella, Salmonella, Streptococcus, Staphylococcus proteus) and antifungal activities (Fusarium, Candida, Rhizopus, Penicillium chrysogenum and Aspergillus niger) by the minimum inhibitory concentration method. The anthelmintic activity of the ligands and their metal complexes against earthworms was investigated. The DNA cleavage study was done by agarose gel electrophoresis. Anti-inflammatory activity studies showed the test compounds are comparable to the standard drug diclofenac sodium.  相似文献   

8.
In this study, two novel Schiff base ligands (L1 and L2) derived from condensation of methyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate and methyl 2-amino-6-phenyl-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate, both starting matter with 5-bromo-salicylaldehyde, and their Zn(II) and Ni(II) metal complexes have been prepared using a molar ratio of ligand:metal as 1:1 except the Ru(II) complexes 1:0.5. The structures of the obtained ligands and their metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, UV–vis, thermal analysis methods, mass spectrometry, and magnetic susceptibility measurements. Antioxidant and antiradical activity of Schiff base ligands and their metal complexes were been evaluated in vitro tests. Antioxidant activities of metal complexes generally were more effectives than free Schiff bases. 1c and 2c were used as catalysts for the transfer hydrogenation (TH) of ketones. 1c, 2c complexes were found to be efficient catalyst for transfer hydrogenation reactions.  相似文献   

9.
A series of metal complexes of cobalt(II), nickel(II), copper(II), and zinc(II) have been synthesized with newly-derived biologically active ligands. These ligands were synthesized by condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and orthophthalaldehyde. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, 1H-NMR, UV-vis, magnetic, ESR, FAB-mass and thermal studies) data. Electrochemical study of the complexes is also made. All complexes are nonelectrolytes in N,N-dimethyl formamide and DMSO. The Schiff bases and their Co(II), Ni(II), Cu(II), and Zn(II) complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus, and cladosporium) activities by minimum inhibitory concentration method. DNA cleavage is also carried out.  相似文献   

10.
The Schiff bases of N(2)O(2) dibasic ligands, H(2)La and H(2)Lb are prepared by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one. Also tetra basic ligands, H(4)La and H(4)Lb are prepared by the condensation of aliphatic amines (a) and (b) with 6-formyl-5,7-dihydroxy-2-methylbenzopyran-4-one. New complexes of H(4)La and H(4)Lb with metal ions Mn(II), Ni(II) and Cu(II) are synthesized, in addition Mn(II) complexes with ligands H(2)La and H(2)Lb are also synthesized. Elemental and thermal analyses, infrared, ultraviolet-visible as well as conductivity and magnetic susceptibility measurements are used to elucidate the structure of the newly prepared metal complexes. The structures of copper(II) complexes are also assigned based upon ESR spectra study. All the complexes separated with the stoichiometric ratio (1:1) (M:L) except Mn-H(4)La and Mn-H(4)Lb with (2:1) (M:L) molar ratio. In metal chelates of the type 1:1 (M:L), the Schiff bases behave as a dinegative N(2)O(2) tetradentate ligands. Moreover in 2:1 (M:L) complexes, the Schiff base molecules act as mono negative bidentate ligand and binuclear complex is then formed. The Schiff bases were assayed by the disc diffusion method for antibacterial activity against Staphylococcus aureus and Escherichia coli. The antifungal activity of the Schiff bases was also evaluated against the fungi Aspergillus flavus and Candida albicans.  相似文献   

11.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

12.
A novel vic-dioxime ligand with a thiourea moiety, (4E,5E)-1,3-bis{4-[(4-bromophenylamino)methylene]phenyl}-2-thiooxaimidazoline-4,5-dione dioxime (4) (bmdH2) has been synthesized from N,N′-bis{4-[(4-bromophenylamino)methylene]phenyl}thiourea and (E,E)-dichloroglyoxime. The bmdH2 ligand (4) forms transition metal complexes [M(bmdH)2] with a metal?:?ligand ratio of 1?:?2 with M?=?Ni(II), Co(II), and Cu(II). The mononuclear Ni(II), Co(II) and Cu(II) complexes, [Ni(bmdH)2] (5), [Co(bmdH)2] (6) and [Cu(bmdH)2] (7) have the metal ions coordinated through the two N,N atoms, as do most vic-dioximes. Elemental analyses, molar conductivity, magnetic susceptibility, IR, 1H NMR spectra, and UV-Visible spectroscopy were used to elucidate the structures of the ligand and its complexes. Conductivity measurements have shown that the mononuclear complexes are non-electrolytes. In addition, the ligands and metal complexes were screened for antibacterial and antifungal activities by agar well diffusion techniques using DMF as solvent.  相似文献   

13.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on, and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods. The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition, the genotoxic properties of the ligands were studied.  相似文献   

14.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   

15.
A relationship between antimicrobial activities and the formation constants of amino acid-Schiff bases and their Cu(II) and Ni(II) complexes was studied. For this purpose, a series of Schiff bases were prepared from DL-amino acids (DL-glycine, DL-alanine) and halo aldehydes (5-chloro-2-hydroxybenzaldehyde, 5-bromo-2-hydroxybenzaldehyde). Schiff bases and their Cu(II) and Ni(II) complexes were characterized by the elemental analysis, spectral analysis, magnetic moment (at ca. 25°C), molar conductivity, and thermal analysis data. The complexes were found to have general compositions [ML(H2O)]. The protonation constants of the Schiff bases and stability constants of the complexes were determined potentiometrically in a dioxane-water (1: 1) solution at 25°C and 0.1 M KCl ionic strength. Antimicrobial activities of the Schiff bases and their complexes were estimated for six bacteria, such as Bacillus cereus RSKK 863, Staphylococcus aureus ATCC 259231, Micrococcus luteus NRLL B-4375, Escherichia coli ATCC 11230, Aeromonas hydrophila 106, Pseudomonas aeroginosa ATCC 29212, and the yeast Candida albicans ATCC 10239. The role of halogen substitution on the ligands, effect of the metal ion, and stabilities of the complexes are discussed on antimicrobial activities. The text was submitted by the authors in English.  相似文献   

16.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

17.
The Schiff bases derived from 3,4-dimethyl-Δ3-tetrahydrobenzaldehyde or 4,6-dimethyl-Δ3-tetrahydrobenzaldehyde and glycine and their complexes with nickel (II) and copper (II) were synthesized and investigated. All compounds were characterized by elemental analyses, conductivity measurements, and FT-IR spectroscopy. The Schiff base ligands and their complexes were further characterized by 1H NMR. The results suggest that the Schiff base acts as a bidentate ligand, which bonds to the metal ions through the imino nitrogen and carboxylate oxygen. The potassium salts of the Schiff bases are 1 : 1 electrolytes but all the complexes are nonelectrolytes. The article was submitted by the authors in English.  相似文献   

18.
The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi-drug resistance (MDR). The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from 3-bromobenzaldehyde/3-chlorobenzaldehyde with 2-aminophenol have been synthesized and characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, ESR, FAB mass, thermal and magnetic susceptibility measurements, FAB mass and thermal data show degradation of complexes. Both the ligands behave as bidentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or 6. X-ray powder diffraction data shows that four (2, 3, 6 and 7) complexes are crystallized in tetragonal system. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus and Streptococcus fecalis and the fungi Aspergillus niger, Trichoderma polysporum and Candida albicans by serial dilution method. A comparative study of the MIC values of the Schiff base and their Co(II) (6) and Cu(II) (8) complexes, indicates that the metal complexes exhibit higher or lower antimicrobial activity than the free ligand (L2).  相似文献   

19.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

20.
A new series of antibacterial and antifungal amino acid derived Schiff bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR and electronic spectral measurements. The spectral data indicated the Schiff base ligands ( L 1– L 5) derived by condensation of salicylaldehyde with glycine, alanine, phenylalanine, methionine and cysteine, to act as tridentate towards divalent metal ions (cobalt, copper, nickel and zinc) via the azomethine‐N, deprotonated carboxyl group of the respective amino acid and deprotonated oxygen atom of salicylaldehyde by a stoichiometric reaction of M: L (1:2) to form complexes of the type K2[M( L )2] [where M = Co(II), Cu(II), Ni(II) and Zn(II)]. The magnetic moments and electronic spectral data suggested that all complexes have an octahedral geometry. Elemental analyses and NMR spectral data of the ligands and their Zn (II) complexes agree with their proposed structures. The synthesized ligands, along with their metal complexes, were screened for their in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram ‐ positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in‐vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared with the uncomplexed Schiff base ligands. The brine shrimp bioassay was also carried out to study their in‐vitro cytotoxic properties. Only three compounds ( 2, 11 and 17 ) displayed potent cytotoxic activity as LD50 = 8.196 × 10?4, 7.315 × 10?4 and 5.599 × 10?4 M /ml respectively, against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号