首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Evidence of hydration forces between proteins   总被引:1,自引:0,他引:1  
Proteins are fundamental molecules in biology that are also involved in a wide range of industrial and biotechnological processes. Consequently, many works in the literature have been devoted to the study of protein–protein and protein–surface interactions in aqueous solutions. The results have been usually interpreted within the frame of the classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory for colloidal systems. However, against the DLVO predictions, striking evidence of repulsive forces between proteins at high salt concentrations has been observed in different works based on the analysis of the second virial coefficient or on the direct measurement of protein interaction with an atomic force microscope. Hydration forces due to the adsorption of hydrated cations onto the negatively charged protein surfaces have been invoked to rationalize this anomalous repulsion. The hydration forces between proteins provide protein-covered particles with a non-DLVO colloidal stability at high salt concentrations, as different studies in the literature has proven. This review summarizes the most relevant results published so far on the presence of hydration forces between proteins and protein-coated colloidal particles.  相似文献   

2.
Abstract

Sorption of ions may lead to variations in interparticle forces and, thus, changes in the stability of colloidal particles. Chemical interactions between metal ions and colloidal particles modify the molecular structure of the surface, the surface charge, and the electrical potential between colloidal particles. These modifications to the surface and to the electrical double layer due to metal ion sorption are reflected in the interaction force between a particle and another surface, which is measured in this study by atomic force microscopy (AFM). Specifically, AFM is used to investigate the sorption of copper ions from aqueous solutions by silica particles. The influence of metal ion concentration and solution ionic strength on surface forces is studied under transient conditions. Results show that as the metal ion concentration is decreased, charge reversal occurs and a longer period of time is required for the system to reach equilibrium. The ionic strength has no significant effect on sorption kinetics. Furthermore, neither metal concentration nor ionic strength exhibits any effect on sorption equilibria, indicating that for the experimental conditions used in this study, the surface sites of the silica particle are fully occupied by copper ions.  相似文献   

3.
Dispersibility of colloidal barium titanate suspensions is reviewed with an emphasis on the use of various polyelectrolytes as dispersants. The fundamentals of colloidal stability are discussed followed by the colloidal properties of barium titanate powder. Dispersion behavior of BaTiO3 in both nonaqueous and aqueous media has been reviewed. Several studies on the stabilization of micron and nano‐sized barium titanate using various polymeric dispersants and a rhamnolipid biosurfactant are presented and discussed. The article attempts to provide a comprehensive review of the current state‐of‐the‐art in the area of colloidal processing of barium titanate.  相似文献   

4.
An anomalous colloidal stability is observed when protein-covered particles are exposed to high salt concentrations, in opposite to the classical theory (DLVO) predictions. In hydrophilic systems some other discrepancies with respect to this theory has also been described in the literature and hydration forces are invoked to rationalize these phenomena. In our case, the dependence of the anomalous behaviour with pH and electrolyte ion concentration points to the specific adsorption of cations as responsible. An extension to the DLVO theory including hydration forces and its dependence with salt concentration is proposed. From the practical point of view, this stabilization mechanism is of great interest in the development of clinical latex immunoassays, which often suffer from colloidal stability problems.  相似文献   

5.
The stability of a solution of charged polystyrene particles in the presence of nonadsorbing polyelectrolyte macromolecules is measured using optical light scattering. The particles were negatively charged polystyrene latex spheres (0.5–1 μm diameter) while the macromolecules were simulated using negatively charged colloidal silica spheres (5–7 nm diameter). Because of the electrostatic repulsion between the particles, the solution is found to be stable against primary flocculation (irreversible flocculation into a primary energy minima). However, because of long-range attractive depletion forces, reversible secondary flocculation of the particles occurs into a local potential energy minimum. As observed with uncharged macromolecules, the polyelectrolyte first induces flocculation at a critical flocculation concentration (v*), but later restabilizes the system at a critical restabilization concentration (v**). These critical concentrations are found to decrease with decreasing macromolecule size and increasing particle size. The restabilized solutions are found to remain suspended for periods greater than 20 days. Comparison of the measured flocculation and restabilization results to predictions made using a recently developed force-balance model show qualitative agreement.  相似文献   

6.
The boundary effects on DC-electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles' surfaces. The electrokinetic slip-velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained and the physical insight for the behavior of the colloidal cylinders are discussed in conjunction with the experimental observations in the literature.  相似文献   

7.
Milk is a complex colloidal suspension of proteins, inorganic materials and lipids. Of the proteins, caseins are present in the highest concentrations, and are themselves organised into a complex structure termed the casein micelle. The remarkable stability of the milk towards pasteurisation, sterilisation and dehydration is directly related to the stability of the casein micelle, which is in turn related to its surface components, notably κ-casein.

In this study, a surface force apparatus has been used to measure interactions between κ-casein surfaces, with a view to determining the forces involved in the stabilisation of the casein micelles. The observed interaction on a first compression is attractive, commencing at a protein surface separation of about 40 nm. This attraction is weak, around 150 μN m−1, and may be hydrophobic in origin. The thickness of the κ-casein layer is 9.8 nm. On separation of the surfaces, no attraction is noted, only a short-range steric interaction being seen, indicating that some configurational change of the protein is occurring.  相似文献   


8.
Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria–mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale.  相似文献   

9.
Acoustic nanodrops are designed to vaporize into ultrasound-responsive microbubbles, which present certain challenges nonexistent for conventional nanoemulsions. The requirements of biocompatibility, vaporizability, and colloidal stability have focused research on perfluorocarbons. Shorter perfluorocarbons yield better vaporizability via their lower critical temperature, but they also dissolve more easily owing to their higher vapor pressure and solubility. Thus, acoustic nanodrops have required a trade-off between vaporizability and colloidal stability in vivo. The recent advent of vaporizable endoskeletal droplets, which are both colloidally stable and vaporizable, may have solved this problem. The purpose of this review is to justify this premise by pointing out the beneficial properties of acoustic nanodrops, providing an analysis of vaporization and dissolution mechanisms, and reviewing current biomedical applications.  相似文献   

10.
Today the capability to rationally design and construct hybrid materials utilizing a performance-property driven methodology is strongly dependent on our ability to control the structure and the dynamics of hybrid interfaces. This control needs a deep knowledge of their molecular and supramolecular dynamics that must be evaluated in situ, in the soft matter or colloidal states. For this purpose the use of modern methodologies of characterization such as time resolved synchrotron experiments and advanced pulsed field gradient NMR methods (DOSY) is particularly relevant. In this critical review, two important examples are discussed. They concern, first, the study of surface capping organic components' affinity towards nanoparticle surfaces by DOSY NMR. The knowledge and therefore the tuning of this affinity is paramount because it controls solubility, transferability and stability of colloidal dispersions of nanoparticles (NPs). In the second part, the mechanism of micellar templated formation of hybrid mesophases will be discussed in the frame of the main results obtained via in situ SAXS (107 references).  相似文献   

11.
Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.  相似文献   

12.
Emulsions are successfully applied in many fields of human activity. When used as liquid colloidal carriers the stability of emulsion droplets against coalescence often requires improvement. Additional protection against colloidal degradation or environmental stresses is almost an unavoidable precondition for employment of emulsion formulations in food industry, pharmaceutics, cosmetics and medicine. In this review, a variety of current approaches to increase emulsion stability were summarized beginning systems stabilized by low molecular weight surfactants and spanning over to finely adjusted nanoengineering systems based on multilayer assemblies with very specific functionalities matching the application demand. Special attention is paid to applications in particular fields.  相似文献   

13.
Surface ligands are essential tools for the stabilization of colloidal nanoparticles (NPs) in solvents. However, knowledge regarding the effects of the ligand shell, especially the ligand length, is insufficient and controversial. Here we demonstrate solution-based experiments on n-alkylphosphonate-capped TiO2 NPs to investigate the effects of ligand length and solution temperature on colloidal stability. A robust ligand-exchange process is achieved that draws free ligands and impurities away from the colloidal solution. In the case of 8 nm anatase NPs in toluene, the dodecylphosphonate ligand provided better colloidal stability than all the other n-alkylphosphonate ligands. In addition, relaxation studies suggested there is kinetic hysteresis in the dispersion/agglomeration transition. The proposed method is applicable to a wide range of surface ligands designed to maximize the colloidal stability of NPs.  相似文献   

14.
Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques.  相似文献   

15.
This work reviews both the theory and experimental measurements of the fundamental forces that control protein solution behavior. In addition to the Derjaguin–Landau–Verwey–Overbeek (DLVO) forces, we also discuss the relative importance of hydrodynamic, solvation, and lock-and-key interactions in controlling protein solution behavior. The more common computational methods used to calculate both electrostatic and van der Waals potentials are described. Particular attention is given to the differences between proteins and ideal colloidal particles, and the computational methods used to address those differences. In addition to theoretical investigations of protein interactions, the results of recent direct measurements of the forces governing protein interactions are reviewed. These experimental results provide not only measurements against which the theories can be tested, but also demonstrate directly the relative importance of both DLVO and non-classical DLVO forces in the control of protein behavior.  相似文献   

16.
The application of colloidal particles from natural materials for purposes ranging from the delivery of bioactives to interfacial stabilisation and bulk structuring have recently gained a lot of interest for applications in the field of fast moving consumer goods, nutraceuticals, agricultural formulations and medicine. Zein-a proline rich water insoluble protein obtained from natural and sustainable source has been recently researched to generate colloidal structures that can find a wide range of applications. In this paper, we review the recent progress in the preparation of colloidal structures and their further application as functional materials in the field of delivery of functional ingredients and structuring of bulk phases and interfaces.  相似文献   

17.
Nanoemulsions exhibit unique behavior due to their nanoscopic dimensions, including remarkable droplet stability, interactions, and rheology. These properties are significantly enhanced by nanoscopic droplet size, as well as the selection of surfactant and other molecular species in solution. Electrostatic and polymer-induced interdroplet interactions are particularly powerful tools for fine-tuning the interdroplet interactions, and have led to stimuli-responsive nanoemulsion systems that provide deep insight into their unique properties. As such, nanoemulsions have emerged as powerful model systems for studying a number of colloidal phenomena including suspension rheology, repulsive and attractive colloidal glasses, aggregation processes, colloidal gelation and phase instability, and associative network formation in polymer–colloid mixtures. This review summarizes recent advances in understanding the colloidal behavior of nanoemulsions, and provides a unifying framework for understanding the various complex states that emerge, as well as perspective on emerging challenges and opportunities that will advance the use of nanoemulsions in both fundamental colloid science and technological applications.  相似文献   

18.
The research progress in colloidal motors, synthetic colloids that convert environmental energy and swim in water, has attracted much attention in recent years. Yet, its rapid development and interdisciplinary nature has created a hurdle for beginners, especially students and postdocs. In light of this challenge, this tutorial review gives a bird's eye overview of the research field of colloidal motors, presenting in a beginner‐friendly manner subjects including the definition and significance of colloidal motors, physical challenges associated with their motion at the microscale, their fabrication and propulsion mechanisms, functionalities that enable their applications, and essential tools and techniques useful for beginners. Emphasis on each aspect is placed on elucidating and connecting important concepts and ideas, rather than on details and individual references. An appendix of recent review articles grouped by subjects on colloidal motors is given in the Supporting Information. This article equips beginners with a clear big picture and essential knowledge that will facilitate future explorations.  相似文献   

19.
Polyelectrolyte brushes are widely used for surface modification of nano-and colloidal particles because of their ability to dramatically change their conformation, hydrophobicity, polarity, charge, etc., as a response to smooth variations in environmental conditions. In this work, we have studied experimentally the stability behavior of polymer colloids with grafted poly-acrylic acid (PAA) surface brushes. We have measured the Fuchs stability ratio (W) as a function of electrolyte concentrations at different pH. It is observed that at pH?<?3, the W values with 1 % and 2 % PAA brushes do not differ significantly from those without PAA, indicating that in their protonated state, the carboxylic groups do not contribute significantly to the colloidal stability. At the intermediate pH?~?5, the PAA brushes are partially deprotonated, and their contribution to the colloidal stability is substantial and increases as the length of the PAA brushes increases. Under alkaline conditions (pH?>?8), since most of the carboxylic groups are ionized, the colloidal stability is much higher than that at pH?~?5. However, the W values are basically the same with 1 % and 2 % PAA, implying that the contribution of the ionized AA in the two cases is practically the same. This experimental evidence indicates that only the ionized AA groups in the outer region of long brushes contribute to colloidal stability, thus supporting the hypothesis of local electroneutrality in the inner region of long brushes (LEA).  相似文献   

20.
We demonstrated the use of electrohydrodynamic atomization to prepare uniform-sized emulsion droplets in which equal spheres of silica or polystyrene were dispersed. The size of the emulsion droplets was easily controlled by the electric field strength and the flow rate, independently of the diameter of the nozzles. During the evaporation of solvent in the droplets, spherical colloidal crystals were formed by self-assembly of the monodisperse colloidal spheres. The diameter of the spherical colloidal crystals was in the range of 10-40 microm. Depending on the stability of colloidal particles, the morphology of the self-assembled structure was varied. In particular, silica spheres in ethanol droplets were self-assembled into compactly packed silica colloidal crystals in spherical shapes, whereas polystyrene latex spheres in toluene droplets self-assembled into spherical colloidal crystal shells with hollow cores. The silica colloidal assemblies reflected diffraction colors according to the three-dimensionally ordered arrangement of silica spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号