首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
Highly efficient asymmetric intermolecular radical‐polar crossover reactions were realized by combining a chiral N,N′‐dioxide/NiII complex catalyst with Ag2O under mild reaction conditions. Various terminal alkenes and indanonecarboxamides/esters underwent radical addition/cyclization reactions to afford spiro‐iminolactones and spirolactones with good to excellent yields (up to 99 %) and enantioselectivities (up to 97 % ee). Furthermore, a range of different radical‐mediated oxidation/elimination or epoxide ring‐opening products were obtained under mild reaction conditions. The Lewis acid catalysts exhibited excellent performance and precluded the strong background reaction.  相似文献   

2.
Despite the significance of sultines in synthesis, medicine, and materials science, the chemistry of sultines has remained unexplored due to their inaccessibility. Herein, we demonstrate the development of a photoredox-catalyzed multifluoromethyl radical addition/SO2 incorporation/polar cyclization cascade approach to multifluoromethylated γ-sultines. The reactions proceed by single electron transfer induced multifluoromethyl radical addition to an alkene followed by SO2 incorporation, and single-electron reduction for polar 5-exo-tet cyclization. Key to the success of the protocol is the use of easily oxidizable multifluoroalkanesulfinates as bifunctional reagents. The reactions proceed with excellent functional-group tolerance to deliver γ-sultines in moderate to excellent yields.  相似文献   

3.
Chemistry of Free Cyclic Vicinal Tricarbonyl Compounds (‘1,2,3‐Triones’). Part 3. Polar and Redox Reactions of 1,2,3‐Triones with Enamines of Different Types – News on Oxonol Dyes, Radicals, and Biradicals The central C?O groups of cyclic 1,2,3‐triones possess outstanding electrophilic (electron‐pair‐accepting) as well as oxidizing (one‐electron‐accepting) properties. Thus, 1,2,3‐triones are chemically related to 1,2‐ and 1,4‐benzoquinones. Whereas polar reactions with carbanion‐like (electron rich) species give rise to nucleophilic addition reactions to C?O groups under exclusive C,C‐bond formation, SET (single‐electron transfer) or redox reactions effect a partial ‘carbonyl Umpolungvia ketyl intermediates (C,C‐ and/or C,O‐bond formation). Here, we report on numerous reactions between electron‐rich, more‐ or less‐polar enamines with 5,5‐dimethylcyclohexane‐1,2,3‐trione ( 9a ) and 1H‐indene‐1,2,3‐trione ( 9b ). Various new derivatives of basic oxonol dyes were formed, including the first oxonol dye incorporating a 1,3‐dioxocyclohexyl moiety. A novel stable radical, 50 / 50′ , was obtained from 9b and 11a via addition, hydrolysis, and treatment with conc. H2SO4. Radical 50 / 50′ represents a vinylogous ‘monodehydroreductone’ and is, thus, related to monodehydroascorbic acid ( 143 ), to Russell's radical cation ( 144 ), to indigo ( 141 / 141′ ), and to quinhydrone.  相似文献   

4.
The generation of carbon‐centered radicals from air‐sensitive organoboron compounds through nucleohomolytic substitution at boron is a general method to generate non‐functionalized and functionalized radicals. Due to their reduced Lewis acidity, alkylboronic pinacol esters are not suitable substrates. We report their in situ conversion into alkylboronic catechol esters by boron‐transesterification with a substoichiometric amount of catechol methyl borate combined with an array of radical chain processes. This simple one‐pot radical‐chain deboronative method enables the conversion of pinacol boronic esters into iodides, bromides, chlorides, and thioethers. The process is also suitable the formation of nitriles and allylated compounds through C?C bond formation using sulfonyl radical traps. The power of combining radical and classical boron chemistry is illustrated with a modular 5‐membered ring formation using a combination of three‐component coupling and protodeboronative cyclization.  相似文献   

5.
Since the discovery of the radical mediated thiol‐ene and thiol‐yne reactions, these reactions have been employed in an intramolecular manner for the synthesis of sulfur‐containing heterocycles. Although closely related on a mechanistic basis, the thiol‐ene and thiol‐yne cyclization can differ greatly in regioselectivity and product distribution, with the thiol‐ene process being more predictable and thus attracting greater utilization. Herein, we review intramolecular thiyl‐radical addition reactions and the factors leading to the observed regioselectivity in examples in which both the 5‐exo and 6‐endo mode of cyclization are feasible. We highlight the applications of these important reactions for organic synthesis in the recent literature.  相似文献   

6.
Densely functionalized cyclopentane derivatives with up to four consecutive stereocenters are assembled by a tandem Michael addition/single‐electron transfer oxidation/radical cyclization/oxygenation strategy mediated by ferrocenium hexafluorophosphate, a recyclable, less toxic single‐electron transfer oxidant. Ester enolates were coupled with α‐benzylidene and α‐alkylidene β‐dicarbonyl compounds with switchable diastereoselectivity. This pivotal steering element subsequently controls the diastereoselectivity of the radical cyclization step. The substitution pattern of the radical cyclization acceptor enables a switch of the cyclization mode from a 5‐exo pattern for terminally substituted olefin units to a 6‐endo mode for internally substituted acceptors. The oxidative anionic/radical strategy also allows efficient termination by oxygenation with the free radical 2,2,6,6‐tetramethyl‐1‐piperidinoxyl, and two C?C bonds and one C?O bond are thus formed in the sequence. A stereochemical model is proposed that accounts for all of the experimental results and allows the prediction of the stereochemical outcome. Further transformations of the synthesized cyclopentanes are reported.  相似文献   

7.
Oxidative single‐electron transfer‐catalyzed tandem reactions consisting of a conjugate addition and a radical cyclization are reported, which incorporate the mandatory terminal oxidant as a functionality into the product.  相似文献   

8.
Two named reactions of fundamental importance and paramount utility in organic synthesis have been reinvestigated, the Barton decarboxylation and Giese radical conjugate addition. N ‐hydroxyphthalimide (NHPI) based redox‐active esters were found to be convenient starting materials for simple, thermal, Ni‐catalyzed radical formation and subsequent trapping with either a hydrogen atom source (PhSiH3) or an electron‐deficient olefin. These reactions feature operational simplicity, inexpensive reagents, and enhanced scope as evidenced by examples in the realm of peptide chemistry.  相似文献   

9.
Protocatechuic acid esters (= 3,4‐dihydroxybenzoates) scavenge ca. 5 equiv. of radical in alcoholic solvents, whereas they consume only 2 equiv. of radical in nonalcoholic solvents. While the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents as compared to that in nonalcoholic solvents is due to a nucleophilic addition of an alcohol molecule at C(2) of an intermediate o‐quinone structure, thus regenerating a catechol (= benzene‐1,2‐diol) structure, it is still unclear why protocatechuic acid esters scavenge more than 4 equiv. of radical (C(2) refers to the protocatechuic acid numbering). Therefore, to elucidate the oxidation mechanism beyond the formation of the C(2) alcohol adduct, 3,4‐dihydroxy‐2‐methoxybenzoic acid methyl ester ( 4 ), the C(2) MeOH adduct, which is an oxidation product of methyl protocatechuate ( 1 ) in MeOH, was oxidized by the DPPH radical (= 2,2‐diphenyl‐1‐picrylhydrazyl) or o‐chloranil (= 3,4,5,6‐tetrachlorocyclohexa‐3,5‐diene‐1,2‐dione) in CD3OD/(D6)acetone 3 : 1). The oxidation mixtures were directly analyzed by NMR. Oxidation with both the DPPH radical and o‐chloranil produced a C(2),C(6) bis‐methanol adduct ( 7 ), which could scavenge additional 2 equiv. of radical. Calculations of LUMO electron densities of o‐quinones corroborated the regioselective nucleophilic addition of alcohol molecules with o‐quinones. Our results strongly suggest that the regeneration of a catechol structure via a nucleophilic addition of an alcohol molecule with a o‐quinone is a key reaction for the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents.  相似文献   

10.
Protocatechuic acid (= 3,4‐dihydroxybenzoic acid; 1 ) exhibits a significantly slow DPPH (= 2,2‐diphenyl‐1‐picrylhydrazyl) radical‐scavenging reaction compared to its esters in alcoholic solvents. The present study is aimed at the elucidation of the difference between the radical‐scavenging mechanisms of protocatechuic acid and its esters in alcohol. Both protocatechuic acid ( 1 ) and its methyl ester 2 rapidly scavenged 2 equiv. of radical and were converted to the corresponding o‐quinone structures 1a and 2a , respectively (Scheme). Then, a regeneration of catechol (= benzene‐1,2‐diol) structures occurred via a nucleophilic addition of a MeOH molecule to the o‐quinones to yield alcohol adducts 1f and 2c , respectively, which can scavenge additional 2 equiv. of radical. However, the reaction of protocatechuic acid ( 1 ) beyond the formation of the o‐quinone was much slower than that of its methyl ester 2 . The results suggest that the slower radical‐scavenging reaction of 1 compared to its esters is due to a dissociation of the electron‐withdrawing carboxylic acid function to the electron‐donating carboxylate ion, which decreases the electrophilicity of the o‐quinone, leading to a lower susceptibility towards a nucleophilic attack by an alcohol molecule.  相似文献   

11.
Bulky P,P?O ligands were designed to inhibit isomerization and reduction side reactions during the cross coupling between sterically hindered aryl halides and alkylboronic acids. Suzuki–Miyaura cross‐couplings between di‐ortho‐substituted aryl bromides and acyclic secondary alkylboronic acids have been achieved with high yields. The method has also enabled the preparation of ortho‐alkoxy di‐ortho‐substituted arenes bearing isopropyl groups in excellent yields. The utility of the synthetic method has been demonstrated in a late‐stage modification of estrone and in the application to a new synthetic route toward gossypol.  相似文献   

12.
The metalloradical activation of ortho‐benzallylaryl N‐tosyl hydrazones with [Co(TPP)] (TPP=tetraphenylporphyrin) as the catalyst enabled the controlled exploitation of the single‐electron reactivity of the redox non‐innocent carbene intermediate. This method offers a novel route to prepare eight‐membered rings, using base metal catalysis to construct a series of unique dibenzocyclooctenes through selective Ccarbene?Caryl cyclization. The desired eight‐membered‐ring products were obtained in good to excellent yields. A large variety of aromatic substituents are tolerated. The proposed reaction mechanism involves intramolecular hydrogen atom transfer (HAT) to CoIII–carbene radical intermediates followed by dissociation of an ortho‐quinodimethane that undergoes 8π cyclization. The mechanism is supported by DFT calculations, and the presence of radical‐type intermediates was confirmed by trapping experiments.  相似文献   

13.
The visible‐light‐promoted decarboxylation of α‐imino‐oxy propionic acids for the generation of iminyl radicals has been accomplished through the use of Ir(dFCF3ppy)2(dtbbpy)PF6 as a photoredox catalyst. Different from visible‐light‐promoted homolysis and single‐electron reduction of oxime derivatives, this strategy provides a novel catalytic cycle for alkene carboimination through a sequence comprising N‐radical generation, iminyl radical cyclization, intermolecular conjugate addition to a Michael acceptor, and single‐electron reduction to afford various pyrroline derivatives in an overall redox‐neutral process. The indolizidine alkaloid skeleton could be easily constructed from a pyrroline derivative prepared by this synthetic method.  相似文献   

14.
A straightforward synthetic method for the construction of benzofuro[2,3‐b]pyrrol‐2‐ones by a novel domino reaction through a radical addition/[3,3]‐sigmatropic rearrangement/cyclization/lactamization cascade has been developed. The domino reaction of O‐phenyl‐conjugated oxime ether with an alkyl radical allows the construction of two heterocycles with three stereogenic centers as a result of the formation of two C?C bonds, a C?O bond, and a C?N bond in a single operation, leading to pyrrolidine‐fused dihydrobenzofurans, which are not easily accessible by existing synthetic methods. Furthermore, asymmetric synthesis of benzofuro[2,3‐b]pyrrol‐2‐one derivatives through a diastereoselective radical addition reaction to a chiral oxime ether was also developed.  相似文献   

15.
New acridinones and enaminone esters were synthesized by microwave‐assisted tandem‐Michael? Michael addition and cyclization from cyclohexane‐1,3‐diones. The reaction mechanism for both open and closed structures, and the presence of intramolecular twelve‐membered rings derived from NH and OH H‐bonds of enaminone esters are discussed.  相似文献   

16.
The photolytic radical intermolecular addition following SH2′ cyclization reactions of t‐BuHgCl with 1‐bromo‐4‐(2‐choroallyloxy)‐but‐2‐ene and (E)‐4‐bromobut‐2‐enyl acrylate gave the good yields and the chemoselectivity of the cyclized product. The high stereoselectivity of the reactions is discussed.  相似文献   

17.
Thiol‐ene cationic and radical reactions were conducted for 1:1 addition between a thiol and vinyl ether, and also for cyclization and step‐growth polymerization between a dithiol and divinyl ether. p‐Toluenesulfonic acid (PTSA) induced a cationic thiol‐ene reaction to generate a thioacetal in high yield, whereas 2,2′‐azobisisobutyronitrile resulted in a radical thiol‐ene reaction to give a thioether, also in high yield. The cationic and radical addition reactions between a dithiol and divinyl ether with oxyethylene units yielded amorphous poly(thioacetal)s and crystalline poly(thioether)s, respectively. Under high‐dilution conditions, the cationic and radical reactions resulted in 16‐ and 18‐membered cyclic thioacetal and thioether products, respectively. Furthermore, concurrent cationic and radical step‐growth polymerizations were realized using PTSA under UV irradiation to produce polymers having both thioacetal and thioether linkages in the main chain.  相似文献   

18.
Benzyne and its 3,4,5,6‐tetraphenyl, 3‐ and 4‐methyl, 3‐methoxy and 4,5‐difluoro derivatives react with acetic acid 2‐selenoxo‐2H‐pyridin‐1‐yl esters 4a‐e to give benzo[b]seleno[2,3‐b]pyridines 10–15 in modest yields. The benzynes were generated by one or more of the following methods: diazotization of anthranilic acids 5a‐g with isoamyl nitrate; mild thermal decomposition of 2‐diazoniobenzenecarboxylate hydrochlorides 6a‐d treatment of (phenyl)[o‐(trimethylsilyl)phenyl]iodonium triflate (7) with tetrabutylammonium fluoride; and treatment of 2‐trimethylsilylphenyl triflates 8a‐c with cesium fluoride. In all the reactions, the corresponding 2‐(methylselenenyl)pyridines 16a‐d were also obtained suggesting that these reactions may involve selenium addition to benzyne via a SET (single electron transfer).  相似文献   

19.
The atom‐transfer carbonylation reaction of various alkyl iodides thereby leading to carboxylic acid esters was effectively accelerated by the addition of transition‐metal catalysts under photoirradiation conditions. By using a combined Pd/ reaction system, vicinal C‐functionalization of alkenes was attained in which α‐substituted iodoalkanes, alkenes, carbon monoxide, and alcohols were coupled to give functionalized esters. When alkenyl alcohols were used as acceptor alkenes, three‐component coupling reactions, which were accompanied by intramolecular esterification, proceeded to give lactones. Pd‐dimer complex [Pd2(CNMe)6][PF6]2, which is known to undergo homolysis under photoirradiation conditions, worked quite well as a catalyst in these three‐ or four‐component coupling reactions. In this metal/radical hybrid system, both Pd radicals and acyl radicals are key players and a stereochemical study confirmed the carbonylation step proceeded through a radical carbonylation mechanism.  相似文献   

20.
Herein, we report a new visible‐light‐promoted strategy to access radical trifluoromethylthiolation reactions by combining halide and photoredox catalysis. This approach allows for the synthesis of vinyl–SCF3 compounds of relevance in pharmaceutical chemistry directly from alkenes under mild conditions with irradiation from household light sources. Furthermore, alkyl–SCF3‐containing cyclic ketone and oxindole derivatives can be accessed by radical‐polar crossover semi‐pinacol and cyclization processes. Inexpensive halide salts play a crucial role in activating the trifluoromethylthiolating reagent towards photoredox catalysis and aid the formation of the SCF3 radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号