首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A modified Takemoto catalyst enabled the asymmetric Michael addition of carbazolones to 2‐chloroacrylonitrile to afford 3,3‐disubstituted carbazolones with excellent enantioselectivity. This method was successfully applied to total syntheses of three Kopsia alkaloids which featured an unprecedented MnIII‐mediated oxidative cyclization to create the caged ring system and a SmI2‐mediated reductive coupling as key steps.  相似文献   

2.
A modified Takemoto catalyst enabled the asymmetric Michael addition of carbazolones to 2‐chloroacrylonitrile to afford 3,3‐disubstituted carbazolones with excellent enantioselectivity. This method was successfully applied to total syntheses of three Kopsia alkaloids which featured an unprecedented MnIII‐mediated oxidative cyclization to create the caged ring system and a SmI2‐mediated reductive coupling as key steps.  相似文献   

3.
《化学:亚洲杂志》2017,12(12):1305-1308
Short syntheses of 4‐deoxycarbazomycin B and sorazolon E were established through the condensation of cyclohexanone and commercially available 4‐methoxy‐2,3‐dimethylaniline, followed by PdII‐catalyzed dehydrogenative aromatization/intramolecular C−C bond coupling and deprotection. A chiral dinuclear vanadium complex (R a,S,S )‐ 6 mediated the enantioselective oxidative coupling of sorazolon E, affording (+)‐sorazolon E2 in good enantioselectivity.  相似文献   

4.
Intermolecular cross‐pinacol coupling reaction between aliphatic and aromatic aldehydes by using heterodinuclear hemisalen complexes 1 cis with vanadium(V) and titanium(IV) on a hexaarylbenzene scaffold is reported. Our ligand design is based on the individual activation of two aldehydes by vanadium and titanium, which are positioned with a suitable space on the rigid scaffold. Ligands such as 1 cis were synthesized by Diels–Alder addition and decarbonylation reaction, followed by condensation of dialdehyde 3 cis with various aminophenols. The influence of the substituents on the ligands on the pinacol coupling reaction was investigated. As a result, the reductive coupling reaction between aliphatic and aromatic aldehydes by using a catalytic amount of 1 cis in the presence of Me3SiCl and Zn provided the corresponding cross‐coupled 1,2‐diol in good yields with high cross‐selectivity.  相似文献   

5.
We report the first total synthesis of (?)‐17‐nor‐excelsinidine, a zwitterionic monoterpene indole alkaloid that displays an unusual N4?C16 connection. Inspired by the postulated biosynthesis, we explored an oxidative coupling approach from the geissoschizine framework to forge the key ammonium–acetate connection. Two strategies allowed us to achieve this goal, namely an intramolecular nucleophilic substitution on a 16‐chlorolactam with the N4 nitrogen atom or a direct I2‐mediated N4?C16 oxidative coupling from the enolate of geissoschizine.  相似文献   

6.
Gossypol is a defense compound in cotton plants for protection against pests and pathogens. Gossypol biosynthesis involves the oxidative coupling of hemigossypol and results in two atropisomers owing to hindered rotation around the central binaphthyl bond. (+)‐Gossypol predominates in vivo, thus suggesting stereochemically controlled biosynthesis. The aim was to identify the factors mediating (+)‐gossypol formation in cotton and to investigate their potential for asymmetric biaryl synthesis. A dirigent protein from Gossypium hirsutum (GhDIR4) was found to confer atropselectivity to the coupling of hemigossypol in presence of laccase and O2 as an oxidizing agent. (+)‐Gossypol was obtained in greater than 80 % enantiomeric excess compared to racemic gossypol in the absence of GhDIR4. The identification of GhDIR4 highlights a broader role for DIRs in plant secondary metabolism and may eventually lead to the development of DIRs as tools for the synthesis of axially chiral binaphthyls.  相似文献   

7.
A broadly applicable route to trans‐2,5‐disubstituted pyrrolidines has been developed. Key steps are an asymmetric iridium‐catalyzed allylic amination, a Suzuki–Miyaura coupling, and an intramolecular aza‐Michael addition. Enantiomeric excesses in the range of 93–99 % ee have been achieved. Total syntheses of the alkaloids (?)‐ 225 C , (+)‐ and (?)‐ 223 H (xenovenine), (+)‐ 223 AB , (+)‐ 195 B , and (+)‐ 223 R have been carried out as applications.  相似文献   

8.
The oxidative transformation of synthetic (+)-aristoteline ((+)- 6 ) into other metabolites which had been isolated from Aristotelia species was investigated. Thus, treatment of (+)- 6 with I2 as the single oxidant furnished the naturally occurring indole alkaloids (+)-makonine ((+)- 9 ),(+)-aristotelinone ((+)- 11 ), or (+)-11, 12-didehydroaristoteline ((+)- 7 ) in good yields, the selectivity of the oxidation process depending on the chosen reaction conditions.  相似文献   

9.
Seven new prenylated indole alkaloids, taichunamides A–G, were isolated from the fungus Aspergillus taichungensis (IBT 19404). Taichunamides A and B contained an azetidine and 4‐pyridone units, respectively, and are likely biosynthesized from notoamide S via (+)‐6‐epi‐stephacidin A. Taichunamides C and D contain endoperoxide and methylsulfonyl units, respectively. This fungus produced indole alkaloids containing an anti‐bicyclo[2.2.2]diazaoctane core, whereas A. protuberus and A. amoenus produced congeners with a syn‐bicyclo[2.2.2]diazaoctane core. Plausible biosynthetic pathways to access these cores within the three species likely arise from an intramolecular hetero Diels–Alder reaction.  相似文献   

10.
Amaryllidaceae Alkaloids from Lycoris radiata   总被引:1,自引:0,他引:1  
A phytochemical investigation on bulbs of Lycoris radiata resulted in the isolation of three new Amaryllidaceae alkaloids, named 5,6‐dehydrodihydrolycorine ( 1 ), 6β‐acetoxycrinamine ( 2 ), and (+)‐8‐O‐acetylhomolycorine αN‐oxide ( 3 ), together with eleven known alkaloids, 4 – 14 . The structures of the new alkaloids were established by means of spectroscopic methods, and the known compounds were identified by comparison of their data with those in the literature. Compound 2 showed cytotoxicity against HL‐60, A‐549, and MCF‐7 cells, with IC50 values of 8.1, 24.3, and 15.0 μM , respectively.  相似文献   

11.
The selective aerobic oxidation of cinnamyl alcohol to cinnamaldehyde, as well as direct oxidative esterification of this alcohol with primary and secondary aliphatic alcohols, were achieved with high chemoselectivity by using gold nanoparticles supported in a nanoporous semicrystalline multi‐block copolymer matrix, which consisted of syndiotactic polystyrene‐cocis‐1,4‐polybutadiene. The cascade reaction that leads to the alkyl cinnamates occurs through two oxidation steps: the selective oxidation of cinnamyl alcohol to cinnamaldehyde, followed by oxidation of the hemiacetal that results from the base‐catalysed reaction of cinnamaldehyde with an aliphatic alcohol. The rate constants for the two steps were evaluated in the temperature range 10–45 °C. The cinnamyl alcohol oxidation is faster than the oxidative esterification of cinnamaldehyde with methanol, ethanol, 2‐propanol, 1‐butanol, 1‐hexanol or 1‐octanol. The rate constants of the latter reaction are pseudo‐zero order with respect to the aliphatic alcohol and decrease as the bulkiness of the alcohol is increased. The activation energy (Ea) for the two oxidation steps was calculated for esterification of cinnamyl alcohol with 1‐butanol (Ea=57.8±11.5 and 62.7±16.7 kJ mol?1 for the first and second step, respectively). The oxidative esterification of cinnamyl alcohol with 2‐phenylethanol follows pseudo‐first‐order kinetics with respect to 2‐phenylethanol and is faster than observed for other alcohols because of fast diffusion of the aromatic alcohol in the crystalline phase of the support. The kinetic investigation allowed us to assess the role of the polymer support in the determination of both high activity and selectivity in the title reaction.  相似文献   

12.
New complexes of arylplatinum(II) and arylplatinum(IV) containing a bridging ligand, 4,4′‐bipyridine, were synthesized by the reaction of starting material of platinum(II) including para‐tolyl groups,[(p‐MeC6H4)2Pt(SMe2)2], with the 4,4′‐bipyridine ligand in 1:1 molar stoichiometry. In the synthesized complexes, the ligand was bonded to the platinum center through the nitrogen donor atoms. To investigate the kinetic reaction of the platinum(II) complex with iodomethane (CH3‐I) as a reagent, the oxidative addition reaction of this reagent with Pt(II) was performed in dichloromethane and a Pt(IV) complex with the octahedral geometry was formed. The synthesized complexes have been characterized by different spectroscopic methods such as FT‐IR, 1H NMR, UV–vis, and elemental analysis. Moreover, the conductivity measurements showed nonelectrolyte characteristics for these complexes. The obtained data showed that the complexes have 1:1 metal‐to‐ligand molar ratio. Also, the oxidative addition reaction of CH3I with the arylplatinum(II) complex at different temperatures was used for obtaining kinetic parameters such as rate constants, activation energy, entropy, and enthalpy of activation using the Microsoft Excel solver. From the acquired data, an SN2 mechanism was suggested for the oxidative addition reaction.  相似文献   

13.
The regioselective effects of tert‐butyl or bromine as the position‐protecting group of feruloytyamide on the oxidative coupling reactions for the synthesis of natural (±)‐canabisin D were investigated in detail. The coupling yield of 8‐8‐coupled aryldihydronaphthalene product of 5‐Br‐feruloytyamide was higher than that of tert‐butyl substituted precursor under FeCl3·6H2O‐acetone‐water oxidative condition.  相似文献   

14.
Henrycinols A ( 1 ) and B ( 2 ), two novel indole alkaloids, together with three known compounds, (+)‐Δ14‐vincamine ( 3 ), (+)‐16‐epi‐Δ14‐vincamine ( 4 ), and (+)‐isoeburnamine ( 5 ), were isolated from the roots of Melodinus henryi Craib . Their structures were established on the basis of 1D‐ and 2D‐NMR spectroscopic analysis. The relative configuration of henrycinols A and B was determined by NOESY analysis.  相似文献   

15.
Jianming Yu 《Tetrahedron letters》2004,45(20):3937-3940
The first enantiospecific total synthesis of the indole alkaloid (+)-dehydrovoachalotine (1) has been achieved from d-(+)-tryptophan methyl ester in 28% overall yield. The formation of the prochiral quaternary carbon center at C-16 in the key intermediate (12) was realized via a Tollens reaction from Na-methylvellosimine (13) in 95% yield. This approach could also be applied to the synthesis of many other indole alkaloids that contain a quaternary carbon center at C(16).  相似文献   

16.
A cobalt‐catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R′CH?CH2, in the presence of zinc and water to give functionalized trans‐disubstituted alkenes, RCH?CHCH2CH2R′, is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl2/P(OMe)3/Zn catalyst system to afford 1,2‐trans‐disubstituted alkenes with high regio‐ and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl2/P(OPh)3/Zn system providing a mixture of 1,2‐trans‐ and 1,1‐disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3‐enynes and acetylene gas with alkenes. Furthermore, a phosphine‐free cobalt‐catalyzed reductive coupling of terminal alkynes with enones, affording 1,2‐trans‐disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air‐stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

17.
A general method for the oxidative substitution of nido‐carborane (7,8‐C2B9H12?) with N‐heterocycles has been developed by using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an oxidant. This metal‐free B?N coupling strategy, in both inter‐ and intramolecular fashions, gave rise to a wide array of charge‐compensated, boron‐substituted nido‐carboranes in high yields (up to 97 %) with excellent functional‐group tolerance under mild reaction conditions. The reaction mechanism was investigated by density‐functional theory (DFT) calculations. A successive single‐electron transfer (SET), B?H hydrogen‐atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen‐containing carboranes with potential applications in medicine and materials.  相似文献   

18.
张华  王方道  岳建民 《中国化学》2006,24(6):781-784
Two unusual nitro-substituted hasubanan-type alkaloids, stephalonines J (1) and K (2), together with ten known alkaloids, protostephanine, dehydrostephanine, (-)-stephanine, (-)-isolaureline, R-roemeroline, (+)-pronuciferine, ( +)-stephafine, ( + )-N-acetylstephafine, ( + )-lirioferine, and ( + )-norlirioferine, were isolated from the whole plant of Stephania longa. Their structures were characterized mainly by spectroscopic methods including IR, MS, and NMR experiments, and the structures of 1 and 2 were further confirmed through chemical correlations with the known alkaloids stephalonines A (1a) and B (2a), respectively.  相似文献   

19.
The reactivity of allyl alcohols of the pinane series and of their epoxides in the presence of montmorillonite clay in intra‐ and intermolecular reactions was studied. Mutual transformations of (+)‐trans‐pinocarveol ((+)‐ 2 ) and (?)‐myrtenol ((?)‐ 3a ) were major reactions of these compounds on askanite–bentonite clay (Schemes 1 and 2). However, the two reactions gave different isomerization products, indicating that the reactivity of the starting alcohol (+)‐ 2 or (?)‐ 3a was different from that of the same compound (+)‐ 2 or (?)‐ 3 formed in the course of the reactions. (?)‐cis‐ and (+)‐trans‐Verbenol ((?)‐ 16 and (+)‐ 12 , resp.), as well as (?)‐cis‐verbenol epoxide ((?)‐ 20 ) reacted with both aliphatic and aromatic aldehydes on askanite–bentonite clay giving various heterocyclic compounds (Schemes 4, 5 and 7); the reaction path depended on the structure of both the terpenoid and the aldehyde.  相似文献   

20.
We introduce the novel fluoroalkoxy molybdenum(V) reagent 1 which has superior reactivity and selectivity in comparison to MoCl5 or the MoCl5/TiCl4 reagent mixture in the oxidative coupling reactions of aryls. Common side reactions, such as chlorination and/or oligomer formation, are drastically diminished creating a powerful and useful reagent for oxidative coupling. Theoretical treatment of the reagent interaction with 1,2‐dimethoxybenzene‐type substrates indicates an inner‐sphere electron transfer followed by a radical cationic reaction pathway for the oxidative‐coupling process. EPR spectroscopic and electrochemical studies, X‐ray analyses, computational investigations, and the experimental scope provide a highly consistent picture. The substitution of chlorido ligands by hexafluoroisopropoxido moieties seems to boost both the reactivity and selectivity of the metal center which might be applied to other reagents as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号