首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enantioselective ring‐closing C(sp3)?H amination of 2‐azidoacetamides is catalyzed by a chiral‐at‐metal ruthenium complex and provides chiral imidazolidin‐4‐ones in 31–95 % yield, with enantioselectivities of up to 95 % ee, and at catalyst loadings down to 0.1 mol % (turnover number (TON)=740). To our knowledge, this is the first example of a highly enantioselective C(sp3)?H amination with aliphatic azides. Mechanistic experiments reveal the importance of the amide group, which presumably enables initial bidentate coordination of the 2‐azidoacetamides to the catalyst. DFT calculations show that the transition state leading to the major enantiomer features a better steric fit and favorable π–π stacking between the substrate and the catalyst framework.  相似文献   

2.
In this work, we have successfully synthesized a new family of chiral Schiff base–phosphine ligands derived from chiral binaphthol (BINOL) and chiral primary amine. The controllable synthesis of a novel hexadentate and tetradentate N,O,P ligand that contains both axial and sp3‐central chirality from axial BINOL and sp3‐central primary amine led to the establishment of an efficient multifunctional N,O,P ligand for copper‐catalyzed conjugate addition of an organozinc reagent. In the asymmetric conjugate reaction of organozinc reagents to enones, the polymer‐like bimetallic multinuclear Cu? Zn complex constructed in situ was found to be substrate‐selective and a highly excellent catalyst for diethylzinc reagents in terms of enantioselectivity (up to >99 % ee). More importantly, the chirality matching between different chiral sources, C2‐axial binaphthol and sp3‐central chiral phosphine, was crucial to the enantioselective induction in this reaction. The experimental results indicated that our chiral ligand (R,S,S)‐ L1 ‐ and (R,S)‐ L4 ‐based bimetallic complex catalyst system exhibited the highest catalytic performance to date in terms of enantioselectivity and conversion even in the presence of 0.005 mol % of catalyst (S/C=20 000, turnover number (TON)=17 600). We also studied the tandem silylation or acylation of enantiomerically enriched zinc enolates that formed in situ from copper‐ L4 ‐complex‐catalyzed conjugate addition, which resulted in the high‐yield synthesis of chiral silyl enol ethers and enoacetates, respectively. Furthermore, the specialized structure of the present multifunctional N,O,P ligand L1 or L4 , and the corresponding mechanistic study of the copper catalyst system were investigated by 31P NMR spectroscopy, circular dichroism (CD), and UV/Vis absorption.  相似文献   

3.
《中国化学》2018,36(9):851-856
A series of novel and easily accessed ferrocene‐based amino‐phosphine‐sulfonamide (f‐Amphamide) ligands have been developed and applied in Ir‐catalyzed asymmetric hydrogenation of aryl ketones, affording the corresponding chiral secondary alcohols with excellent results (up to >99% conversion, >99% ee and TON up to 200 000). DFT calculations suggest an activating model involving an alkali cation Li+.  相似文献   

4.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

5.
A new class of bidentate phosphoramidite ligands, based on a spiroketal backbone, has been developed for the rhodium‐catalyzed hydroformylation reactions. A range of short‐ and long‐chain olefins, were found amenable to the protocol, affording high catalytic activity and excellent regioselectivity for the linear aldehydes. Under the optimized reaction conditions, a turnover number (TON) of up to 2.3×104 and linear to branched ratio (l/b) of up to 174.4 were obtained in the RhI‐catalyzed hydroformylation of terminal olefins. Remarkably, the catalysts were also found to be efficient in the isomerization–hydroformylation of some internal olefins, to regioselectively afford the linear aldehydes with TON values of up to 2.0×104 and l/b ratios in the range of 23.4–30.6. X‐ray crystallographic analysis revealed the cis coordination of the ligand in the precatalyst [Rh( 3 d )(acac)], whereas NMR and IR studies on the catalytically active hydride complex [HRh(CO)2( 3 d )] suggested an eq–eq coordination of the ligand in the species.  相似文献   

6.
Asymmetric anionic polymerizations of 7‐cyano‐7‐alkoxycarbonyl‐1,4‐benzoquinone methides ( 1 ) with various alkoxy groups were performed using chiral initiators such as lithium isopropylphenoxide (iPrPhOLi)/(S)‐(–)‐2,2′‐isopropylidene‐bis(4‐phenyl‐2‐oxazoline) ((–)‐PhBox) and lithium isopropylphenoxide (iPrPhOLi)/(–)‐sparteine ((–)‐Sp) to investigate the effect of the alkoxy groups of alkoxycarbonyl substituent in the monomers 1 and chiral ligands of chiral initiators on the control of chiral center in the formation of polymers. Molar optical rotation values of the polymers were significantly dependent upon alkoxy groups, and the polymers with higher molar optical rotation were obtained in monomers with primary alkoxy groups. The asymmetric anionic oligomerizations of the quinone methides having methoxy( 1a ), ethoxy( 1b ), and n‐propoxy( 1c ) groups with chiral initiators were carried out. Both 1‐mers and 2‐mers were isolated and their optical resolutions were performed to determine the extent of stereocontrol. High stereoselectivity was observed at the propagation reaction, but not at the initiation reaction. The effect of the counterion on the control of chiral center in the formation of the polymer was investigated in the asymmetric anionic polymerizations of 1b with iPrPhOM(M = Li, Na, K)/(–)‐Sp and iPrPhOM(M = Li, Na, K)/(–)‐PhBox initiators and discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Mesoporous monolithic hybrid cellulose‐2.5‐acetate (CA)/polymer supports were prepared under solvent‐induced phase separation conditions using cellulose‐2.5‐acetate microbeads 8–14 μm in diameter, 1,1,1‐tris(hydroxymethyl)propane and 4,4′‐methylenebis(phenylisocyanate) as monomers as well as THF and n‐heptane as porogenic solvents. 4‐(Dimethylamino)pyridine and dibutyltin dilaurate (DBTDL), respectively, were used as catalysts. Monolithic hybrid supports were used in transesterification reactions of vinyl butyrate with 1‐butanol under continuous, supported ionic liquid–liquid conditions with Candida antarctica lipase B (CALB) and octylmethylimidazolium tetrafluoroborate ([OMIM+][BF4?]) immobilized within the CA beads inside the polymeric monolithic framework and methyl tert‐butyl ether (MTBE) as the continuous phase. The new hybrid bioreactors were successfully used in dimensions up to 2×30 cm (V=94 mL). Under continuous biphasic liquid–liquid conditions a constant conversion up to 96 % was achieved over a period of 18 days, resulting in a productivity of 58 μmol mg?1(CALB) min?1. This translates into an unprecedented turnover number (TON) of 3.9×107 within two weeks, which is much higher than the one obtained under standard biphasic conditions using [OMIM+][BF4?]/MTBE (TON=2.7×106). The continuous liquid–liquid setup based on a hybrid reactor presented here is strongly believed to be applicable to many other enzyme‐catalyzed reactions.  相似文献   

8.
Well‐designed, self‐assembled, metal–organic frameworks were constructed by simple mixing of multitopic MonoPhos‐based ligands ( 3 ; MonoPhos=chiral, monodentate phosphoramidites based on the 1,1′‐bi‐2‐naphthol platform) and [Rh(cod)2]BF4 (cod=cycloocta‐1,5‐diene). This self‐supporting strategy allowed for simple and efficient catalyst immobilization without the use of extra added support, giving well‐characterized, insoluble (in toluene) polymeric materials ( 4 ). The resulting self‐supported catalysts ( 4 ) showed outstanding catalytic performance for the asymmetric hydrogenation of a number of α‐dehydroamino acids ( 5 ) and 2‐aryl enamides ( 7 ) with enantiomeric excess (ee) ranges of 94–98 % and 90–98 %, respectively. The linker moiety in 4 influenced the reactivity significantly, albeit with slight impact on the enantioselectivity. Acquisition of reaction profiles under steady‐state conditions showed 4 h and 4 i to have the highest reactivity (turnover frequency (TOF)=95 and 97 h?1 at 2 atm, respectively), whereas appropriate substrate/catalyst matching was needed for optimum chiral induction. The former was recycled 10 times without loss in ee (95–96 %), although a drop in TOF of approximately 20 % per cycle was observed. The estimation of effective catalytic sites in self‐supported catalyst 4 e was also carried out by isolation and hydrogenation of catalyst–substrate complex, showing about 37 % of the RhI centers in the self‐supported catalyst 4 e are accessible to substrate 5 c in the catalysis. A continuous flow reaction system using an activated C/ 4 h mixture as stationary‐phase catalyst for the asymmetric hydrogenation of 5 b was developed and run continuously for a total of 144 h with >99 % conversion and 96–97 % enantioselectivity. The total Rh leaching in the product solution is 1.7 % of that in original catalyst 4 h .  相似文献   

9.
Enantiodivergent, catalytic reduction of activated alkenes relays stereochemical information encoded in the antipodal chiral catalysts to the pro‐chiral substrate. Although powerful, the strategy remains vulnerable to costs and availability of sourcing both catalyst enantiomers. Herein, a stereodivergent hydrogenation of α,β‐unsaturated phosphonates is disclosed using a single enantiomer of the catalyst. This enables generation of the R‐ or S‐configured β‐chiral phosphonate with equal and opposite selectivity. Enantiodivergence is regulated at the substrate level through the development of a facile EZ isomerisation. This has been enabled for the first time by selective energy transfer catalysis using anthracene as an inexpensive organic photosensitiser. Synthetically valuable in its own right, this process enables subsequent RhI‐mediated stereospecific hydrogenation to generate both enantiomers of the product using only the S‐catalyst (up to 99:1 and 3:97 e.r.). This strategy out‐competes the selectivities observed with the E‐substrate and the R‐catalyst.  相似文献   

10.
A ZnII complex of a C2‐chiral bisamidine‐type sp2N bidentate ligand ( L R ) possessing two dioxolane rings at both ends catalyzes a highly efficient quinone asymmetric Diels‐Alder reaction (qADA) between o‐alkoxy‐p‐benzoquinones and 1‐alkoxy‐1,3‐butadienes to construct highly functionalized chiral cis‐decalins, proceeding in up to a >99:1 enantiomer ratio with a high generality in the presence of H2O (H2O:ZnII=4–6:1). In the absence of water, little reaction occurs. The loading amount of the chiral ligand can be minimized to 0.02 mol % with a higher Zn/ L R ratio. This first success is ascribed to a supramolecular 3D arrangement of substrates, in which two protons of an “H2O‐ZnII” reactive species make a linear hydrogen bond network with a dioxolane oxygen atom and one‐point‐binding diene; the ZnII atom captures the electron‐accepting two‐points‐binding quinone fixed on the other dioxolane oxygen atom via an n‐π* attractive interaction. The mechanisms has been supported by 1H NMR study, kinetics, X‐ray crystallographic analyses of the related Zn L R complexes, and ligand and substrate structure‐reactivity‐selectivity relationship.  相似文献   

11.
We herein report the development of a conformationally defined, electron‐rich, C2‐symmetric, P‐chiral bisphosphorus ligand, ArcPhos, by taking advantage of stereoelectronic effects in ligand design. With the Rh‐ArcPhos catalyst, excellent enantioselectivities and unprecedentedly high turnovers (TON up to 10 000) were achieved in the asymmetric hydrogenation of aliphatic carbocyclic and heterocyclic tetrasubstituted enamides, to generate a series of chiral cis‐2‐alkyl‐substituted carbocyclic and heterocyclic amine derivatives in excellent enantiomeric ratios. This method also enabled an efficient and practical synthesis of the Janus kinase inhibitor (R)‐tofacitinib.  相似文献   

12.
An enantioselective method was developed for the simultaneous detection of five chiral fungicides in soil, including fenbuconazole ( 1 ), tetraconazole ( 2 ), nuarimol ( 3 ), triticonazole ( 4 ), and simeconazole ( 5 ) by LC–MS/MS on a chiral stationary phase of cellulose tris‐(3‐chloro‐4‐methylphenylcarbamate) with a gradient elution. A new multifunctional filter was designed to simplify the QuEChERS (where QuEChERS is quick, easy, cheap, effective, rugged, and safe) method by simultaneous cleanup and filtration when the sample extracts were directly passed through it. Good linearities (R2 > 0.9980) were obtained in the range 0.005–2.5 mg/L, and the recovery rates were 77.4–103.6% with RSDs of 0.7–12.2% for intraday precision and 1.2–11.0% for interday precision. The LODs and LOQs for all enantiomers were in the range 0.1–0.2 and 0.25–0.5 μg/kg, respectively. The analysis of the incubated soil suggests that this method is reliable and practical for the stereoselective detection of chiral fungicides.  相似文献   

13.
Optically pure α‐diimines quantitatively obtained in solvent‐free conditions starting from 2,3‐butanedione and (S)‐(?)‐1‐phenylethylamine and (S)‐(?)‐1‐(4‐methylphenyl)ethylamine, respectively, yielded the new chiral mono‐Pd complexes 2a–b, which have been partly characterized by IR, 1H‐ and 13C‐NMR spectroscopies along with MS‐FAB+ spectrometry. The crystal and molecular structure for palladacycle 2a has been fully confirmed by single‐crystal X‐ray studies. Studies in vitro of 2a–b have displayed growth inhibition against different classes of cancer: leukemia (K‐562 CML), colon cancer (HCT‐15), breast cancer (MCF‐7), central nervous system (U‐251 Glio) and prostate cancer (PC‐3) cell lines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The iridium complexes of chiral spiro aminophophine ligands, especially the ligand with 3,5‐di‐tert‐butylphenyl groups on the P atom ( 1c ) were demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of alkyl aryl ketones. In the presence of KOtBu as a base and under mild reaction conditions, a series of chiral alcohols were synthesized in up to 97 % ee with high turnover number (TON up to 10 000) and high turnover frequency (TOF up to 3.7×104 h−1). Investigation on the structures of the iridium complexes of ligands (R)‐ 1a and 1c by X‐ray analyses disclosed that the 3,5‐di‐tert‐butyl groups on the P‐phenyl rings of the ligand are the key factor for achieving high activity and enantioselectivity of the catalyst. Study of the catalysts generated from the Ir‐(R)‐ 1c complex and H2 by means of ESI‐MS and NMR spectroscopy indicated that the early formed iridium dihydride complex with one (R)‐ 1c ligand was the active species, which was slowly transformed into an inactive iridium dihydride complex with two (R)‐ 1c ligands. A plausible mechanism for the reaction was also suggested to explain the observations of the hydrogenation reactions.  相似文献   

15.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

16.
Through photocatalysed regiospecific and stereoselective additions of cycloamines to 5‐(R)‐(l)‐menthyloxy‐2 (5H)‐furanone (3), chiral 5‐(R)‐(l)‐menthyloxy‐4‐cycloaminobutyrolactones were synthesized. In the new asymmetric photoaddition of compound 3, the N‐methyl cyclic amines (4) gave novel chiral C? C photoadducts (5) in 24–50% isolated yields with d. e. ≥ 98%. However, the secondary cyclic amines (6) afforded optically active N? C photoadducts (7) in 34–58% isolated yields with d. e. ≥ 98% under the same condition. All the synthesized optically active compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]58920, IR, 1H NMR, 13C NMR, MS and elementary analysis. The photosynthesis of chiral butyrolactones and its mechanism were discussed in detail.  相似文献   

17.
A highly efficient copper‐catalyzed enantioselective ring opening of oxabicylic alkenes with Grignard reagents has been developed by using chiral spiro phosphine ligands. Excellent trans selectivities, good yields, and high enantioselectivities are obtained for a broad range of Grignard reagents under mild reaction conditions. The catalyst system shows an extraordinary activity and the TON of the reaction reaches 9000.  相似文献   

18.
Structure elucidation of 9‐S and 9‐R oxirane derivatives of ascomycin, a 23‐membered immunomodulating macrolactam, was performed using NMR spectroscopy. The total 1H and 13C signal assignments required the gradient‐selected versions of COSY (gs‐COSY), heteronuclear multiple quantum‐correlation spectroscopy (gs‐HSQC), heteronuclear multiple‐bond correlation spectroscopy (gs‐HMBC), and nuclear Overhauser methods. The data sets then were used to examine the dependence of ketone–hemiketal and cistrans amide equilibria on the substitution pattern and the absolute configuration of the chiral oxirane. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A strategy for expanding the utility of chiral pyridine‐2,6‐bis(oxazoline) (pybox) ligands for asymmetric transition metal catalysis is introduced by adding a bidentate ligand to modulate the electronic properties and asymmetric induction. Specifically, a ruthenium(II) pybox fragment is combined with a cyclometalated N‐heterocyclic carbene (NHC) ligand to generate catalysts for enantioselective transition metal nitrenoid chemistry, including ring contraction to chiral 2H‐azirines (up to 97 % ee with 2000 TON) and enantioselective C(sp3)?H aminations (up to 97 % ee with 50 TON).  相似文献   

20.
We report the synthesis of the novel half‐titanocene alkoxide complex bischloro‐η5‐cyclopentadienyl(bicyclo[2.2.1]‐hept‐5‐en‐2‐oxy) titanium (IV), [CpTiCl2(O‐NBE)]. This complex was employed for the synthesis of chiral poly(l ‐lactide‐b‐hexyl isocyanate) diblock copolymer bearing a norbornene end group with sequential addition of monomers. The poly(hexyl isocyanate) block is chiral due to the last l ‐lactide unit of the poly(l ‐lactide) block. This macromonomer was polymerized towards a chiral polymer brush structure with polynorbornene backbone and chiral poly(l ‐lactide‐b‐hexyl isocyanate) side chains using Grubbs first‐generation catalyst. The polymers were characterized using size exclusion chromatography (SEC), nuclear magnetic resonance (NMR), and circular dichroism (CD) spectroscopy and their thermal properties were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1102–1112  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号