首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
In the field of molecular electronics, an intimate link between the delocalization of molecular orbitals and their ability to support current flow is often assumed. Delocalization, in turn, is generally regarded as being synonymous with structural symmetry, for example, in the lengths of the bonds along a molecular wire. In this work, we use density functional theory in combination with nonequilibrium Green's functions to show that precisely the opposite is true in the extended metal atom chain Cr(3)(dpa)(4)(NCS)(2) where the delocalized π framework has previously been proposed to be the dominant conduction pathway. Low-symmetry distortions of the Cr(3) core do indeed reduce the effectiveness of these π channels, but this is largely irrelevant to electron transport at low bias simply because they lie far below the Fermi level. Instead, the dominant pathway is through higher-lying orbitals of σ symmetry, which remain essentially unperturbed by even quite substantial distortions. In fact, the conductance is actually increased marginally because the σ(nb) channel is displaced upward toward the Fermi level. These calculations indicate a subtle and counterintuitive relationship between structure and function in these metal chains that has important implications for the interpretation of data emerging from scanning tunnelling and atomic force microscopy experiments.  相似文献   

4.
Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1‐(β‐D ‐ribofuranosyl)‐2‐pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1‐(β‐D ‐ribofuranosyl)‐5‐methyl‐2‐pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital‐based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

5.
6.
The electronic structure of the last synthesized fullerene molecule, the C50Cl10, has been characterized by theoretical simulation of x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and near-edge x-ray-absorption fine structure. All the calculations were performed at the gradient-corrected and hybrid density-functional theory levels. The combination of these techniques provides detailed information about the valence band and the unoccupied molecular orbitals, as well as about the carbon core orbitals.  相似文献   

7.
Mesostructured silica thin films and particles provide highly versatile supports or frameworks for functional materials where a desired function (such as energy transfer, electron transfer, or molecular machines) is induced by molecules deliberately placed in specific regions of the structure. The relatively gentle templated sol–gel synthesis methods allow a wide variety of molecules to be used, and the optical transparency of the framework is very suitable for studies of light-induced functionality. In this paper, three types of functionality are used to obtain fundamental understanding of the materials themselves and to develop active materials that can trap and release molecules from the pores upon command. Photo-induced energy transfer is used to verify that molecules can be placed in specific spatially separated regions of the framework; fluorescence resonance energy transfer is used as a molecular ruler to measure quantitatively the distance between pairs of molecules. Secondly, photo-induced electron transfer is used to obtain fundamental information about the electrical insulating properties of the framework. Finally, two types of molecular machines, a light-driven impeller and a light activated nanovalve, are described. Both machines contain moving parts attached to solid supports and do useful work. The valves trap and release molecules from the mesopores, and the impellers expel molecules from the pores. Applications of the materials to drug delivery and the release of drug molecules inside living cells is described.  相似文献   

8.
Extremely localized molecular orbitals are rigorously localized on only a preselected set of atoms and do not have any tails outside the localization region. The importance of these orbitals lies in their ability to be transferred from one molecule to another one. A new algorithm to determine extremely localized molecular orbitals in the framework of the density functional theory method is presented. This could also be a valuable tool in the quantum mechanics/molecular mechanics methodology where localized molecular orbitals are used to describe covalent bonds across the frontier region. The present approach is used to build up the electron density of thymopentin, a polypeptide constituted by five residues, starting from extremely localized molecular orbitals determined on a set of model molecules. The results obtained confirm good transferability properties for these orbitals.Proceedings of the 11th International Congress of Quantum Chemistry satellite meeting in honor of Jean-Louis Rivail  相似文献   

9.
The qualitative structures of the upper one‐electron energy levels of imidazole‐coordinated first‐row transition metal porphyrin [MePIm2] complexes established in the present study have shown that the second oxidation number of the first‐row transition metals in the neutral complexes do not change in their cations and double cations. It was found that occupied orbitals of the density functional theory method obtained with B3LYP functional are not correctly ordered. Therefore, they cannot be used in investigations of the orbital structure of the upper molecular orbitals. A qualitative analysis of density functional theory method wave functions in terms of Mulliken and natural charges of atoms, together with an analysis of electrostatic potentials of the neutral [MePIm2] complex, its single and double cations, demonstrates that the highest occupied orbitals of these complexes are mainly formed by atomic orbitals of the porphyrin ring atoms. Therefore, transition metal atoms are not active in chemical reactions with these complexes unless the 3d electrons of transition metal atoms are excited, for example by light. A mechanism of an electron transfer reaction that occurs between a heme cytochrome and Fe‐oxide mineral surface is discussed in the light of the obtained results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
First principles electronic structure calculations are typically performed in terms of molecular orbitals (or bands), providing a straightforward theoretical avenue for approximations of increasing sophistication, but do not usually provide any qualitative chemical information about the system. We can derive such information via post‐processing using natural bond orbital (NBO) analysis, which produces a chemical picture of bonding in terms of localized Lewis‐type bond and lone pair orbitals that we can use to understand molecular structure and interactions. We present NBO analysis of large‐scale calculations with the ONETEP linear‐scaling density functional theory package, which we have interfaced with the NBO 5 analysis program. In ONETEP calculations involving thousands of atoms, one is typically interested in particular regions of a nanosystem whilst accounting for long‐range electronic effects from the entire system. We show that by transforming the Non‐orthogonal Generalized Wannier Functions of ONETEP to natural atomic orbitals, NBO analysis can be performed within a localized region in such a way that ensures the results are identical to an analysis on the full system. We demonstrate the capabilities of this approach by performing illustrative studies of large proteins—namely, investigating changes in charge transfer between the heme group of myoglobin and its ligands with increasing system size and between a protein and its explicit solvent, estimating the contribution of electronic delocalization to the stabilization of hydrogen bonds in the binding pocket of a drug‐receptor complex, and observing, in situ, the n → π* hyperconjugative interactions between carbonyl groups that stabilize protein backbones. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The valency interaction formula (VIF) method is given a broader and more general interpretation in which these simple molecular structural formulas implicitly include all overlaps between valence atomic orbitals even for interactions not drawn in the VIF picture. This applies for VIF pictures as one-electron Hamiltonian operators as well as VIF pictures as one-electron density operators that constitute a new implementation of the VIF method simpler in its application and more accurate in its results than previous approaches. A procedure for estimating elements of the effective charge density-bond order matrix, Pmunu, from electron configurations in atoms is presented, and it is shown how these lead to loop and line constants in the VIF picture. From these structural formulas, one finds the number of singly, doubly, and unoccupied molecular orbitals, as well as the number of molecular orbitals with energy lower, equal, and higher than -1/2Eh, the negative of the hydrogen atom's ionization energy. The VIF results for water are in qualitative agreement with MP2/6311++G3df3pd, MO energy levels where the simple VIF for water presented in the earlier literature does not agree with computed energy levels. The method presented here gives the simplest accurate VIF pictures for hydrocarbons. It is shown how VIF can be used to predict thermal barriers to chemical reactions. Insertion of singlet carbene into H2 is given as an example. VIF pictures as one-electron density operators describe the ground-state multiplicities of B2, N2, and O2 molecules and as one-electron Hamiltonian operators give the correct electronegativity trend across period two. Previous implementations of VIF do not indicate singly occupied molecular orbitals directly from the pictorial VIF rules for these examples. The direct comparison between structural formulas that represent electron density and those that represent energy is supported by comparison of a simple electronegativity scale, chiD=N/n2, with well-known electronegativity scales of Pauling, Mulliken, and Allen. This scale comes from the method used to calculate Pmumu for sp3 hybridized period-two elements and is comparable to electronegativity because it has the same form as <1/r> for hydrogenic orbitals. It therefore provides a physical basis for the representation of one electron density and Hamiltonian operators by the same VIF picture.  相似文献   

12.
Ultrafast vibrational spectroscopy experiments, together with molecular-level theoretical interpretation, can provide important information about the structure and dynamics of complex condensed phase systems, including liquids. The theoretical challenge is to calculate the instantaneous vibrational frequencies of a molecule in contact with a molecular environment, accurately and quickly, and to this end a number of different methods have been developed. In this paper we critically analyze these different methods by comparing their results to accurate benchmark calculations on azide/water clusters. We also propose an optimized quantum mechanics/molecular mechanics method, which for this problem is superior to the other methods.  相似文献   

13.
The usual one‐electron populations in atomic orbitals of closed shell systems are split into unpaired and paired at the (spin‐dependent) second‐order reduced density matrix level. The unpaired electron in an orbital is defined as the “simultaneous occurrence of an electron and an electron hole of opposite spins in the same spatial orbital,” which for simplicity is called “electropon.” The electropon population in a given orbital reveals whether and to what degree the Coulomb correlations, and hence, the chemical bonding between this orbital and the remaining orbitals of the system are globally favorable or unfavorable. The interaction of two electropons in two target orbitals reveals the quality (favorable or unfavorable) and the strength of the covalent bonding between these orbitals; this establish a bridge between the notion of “unpaired electrons” and the traditional covalent structure of valence‐bond (VB) theory. Favorable/unfavorable bonding between two orbitals is characterized by the positive/negative (Coulomb) correlation of two electropons of opposite spins, or alternatively, by the negative/positive (Fermi) correlation of two parallel spin electropons. A spin‐free index is defined, and the relationship between the electropon viewpoint for chemical bonding and the well‐known two‐electron Coulomb and Fermi correlations is established. Benchmark calculations are achieved for ethylene, hexatriene, benzene, pyrrole, methylamine, and ammonia molecules on the basis of physically meaningful natural orbitals. The results, obtained in the framework of both orthogonal and nonorthogonal population analysis methods, provide the same conceptual pictures, which are in very good agreement with elementary chemical knowledge and VB theory. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
In situ techniques are indispensable to understanding many topics in surface chemistry. As a consequence, several spectroscopic methods have been developed to provide molecular‐level information that only spectroscopy can supply. However, as important as this information is, it is just as critical to realize that nearly all surfaces under investigation have spatial heterogeneities of the order of nanometers to millimeters; thus, spatial analysis is very important to the overall interpretation. This Minireview focuses on a few of the recent developments in spectroscopic techniques that can provide spatial, spectroscopic, and in situ information. These techniques include photo‐electron microscopy, infrared and Raman imaging, and nonlinear optical imaging vibrational spectroscopy as applied to topics in corrosion, catalysis and self‐assembled monolayers.  相似文献   

15.
This article describes a theoretical study of four ferulic acid dimer derivatives, in order to obtain information about their reactivity towards free radicals and their antioxidant capacity. The results, of the studied structures, have been carefully studied by analyzing their molecular orbitals, spin density distribution, and bond dissociation enthalpies (BDEs), using the PBE0/6-311++G(2d,2p) method. Our results were compared with those already obtained experimentally in the literature by García-Conesa and co-workers, such comparisons show good agreement. These comparisons show that the results obtained from molecular orbitals and spin density distribution provide the most information about these molecular systems. The role of the OH group from the carboxyl groups, in all structures, is not very significant due to low electron delocalization, which is only located in the R–COO? fragment.  相似文献   

16.
Calculations of large scale electronic structure within periodic boundary conditions, mostly based on solid state physics, allow the modeling of atomic forces and molecular dynamics for atomic assemblies of 100–1000 atoms, thus providing complementary information in material and macromolecular sciences. Nevertheless, these methods lack connections with the chemistry of simple molecules as isolated entities. In order to contribute to establish a conceptual connection between solid state physics and chemistry, the calculation of the extent of electron sharing between atoms, also known as delocalization index, is performed on simple molecules and on complexes with transition metal atoms, using density functional calculations where the Kohn–Sham molecular orbitals are represented in terms of plane waves and in periodic boundary conditions. These applications show that the useful measure of electron sharing between atomic pairs can be recovered from density functional calculations using the same set-up applied to large atomic assemblies in condensed phases, with no projections of molecular orbitals onto atomic orbitals.  相似文献   

17.
Results of a study of the valence electronic structure of norbornene (C(7)H(10)), up to binding energies of 30 eV, are reported. Experimental electron momentum spectroscopy (EMS) and theoretical Green's function and density functional theory approaches were utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-zeta quality provides the best representation of the electron momentum distributions for all 19 valence orbitals of norbornene. This experimentally validated model was then used to extract other molecular properties of norbornene (geometry, infrared spectrum). When these calculated properties are compared to corresponding results from independent measurements, reasonable agreement is typically found. Due to the improved energy resolution, EMS is now at a stage to very finely image the effective topology of molecular orbitals at varying distances from the molecular center, and the way the individual atomic components interact with each other, often in excellent agreement with theory. This will be demonstrated here. Green's Function calculations employing the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than about 22 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet emission and newly presented (e,2e) ionization spectra. Finally, limitations inherent to calculations of momentum distributions based on Kohn-Sham orbitals and employing the vertical depiction of ionization processes are emphasized, in a formal discussion of EMS cross sections employing Dyson orbitals.  相似文献   

18.
19.
20.
A substance on which X-rays fall emits photoelectrons and Auger electrons. The energy spectra of the electrons emitted provide information about the electronic structure in the specimen, ranging from the innermost atomic levels and their dependence on the chemical environment to the molecular orbitals of the valence electrons and the band structure in solids. Electron spectra of this nature can now be recorded with high-resolution instruments; their analysis offers new aspects for investigation of chemical composition. The method of electron spectroscopy developed for this purpose, which has now been developed to a high degree of perfection, will be referred to in the following discussion as ESCA (Electron Spectroscopy for Chemical Analysis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号