首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Reactions of monooxidized thioyl and selenoyl bis(phosphanyl)amine ligands C10H7‐1‐N(P(E)Ph2)(PPh2) [E = S ( 1 ), Se ( 2 )] with Mo(CO)4(pip)2 and W(CO)4(cod) afforded the complexes [M(CO)4{ 1 ‐κ2P,S}] [M = Mo ( 3 ), W ( 4 )] and [M(CO)4{ 2 ‐κ2P,Se}] [M = Mo ( 5 ), W ( 6 )]. Complexes 3 – 6 were characterized by multinuclear NMR (1H, 13C, 31P, and 77Se NMR) and IR spectroscopy. Crystal‐structure determinations were carried out on 3 , 5 , and 6 , which represent the first examples of structurally characterized complexes of such ligands with group‐6 metal carbonyls.  相似文献   

2.
Two tetranuclear clusters of formula [M4L4(HOMe)4] {H2L = (E)‐1‐[(2‐(hydroxymethyl)phenylimino)methyl]naphthalen‐2‐ol} [M = Co ( 1 ), Ni ( 2 )] were hydrothermally synthesized by reaction of M(OAc)2 · 4H2O with H2L and NaOH in MeOH. X‐ray crystal structure analysis revealed that complexes 1 and 2 are isostructural. In the core of the structures, four MII ions and four oxygen atoms occupied alternate vertices of [M4O4] cubane. The magnetic property measurements of 1 and 2 revealed that overall ferromagnetic MII ··· MII exchange interactions exist in both complexes.  相似文献   

3.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

4.
Two germanato‐polyoxovanadates with the {V15Ge6O48} cluster core are extended by covalent bonds to four transition metal amine complexes [M(tren)]2+ (M = Co and Zn, tren = tris(2‐aminoethyl)amine). The complexes have bonds to terminal atoms of the Ge2O7 units and such expansion of a germanato‐polyxovanadate was never observed before. The characterization of these compounds revealed the presence of two protonated tren molecules charge balancing the negative charges of the [{M(tren)}4V15Ge6O48(H2O)]4– anion.  相似文献   

5.
A series of eleven heteroleptic bis(phthalocyaninato) rare earth double‐deckers [MIII(pc){pc(α‐OC5H11)4}] 1 – 11 (M=Y, Sm? Lu; pc=phthalocyaninato; pc(α‐OC5H11)4=1,8,15,22‐tetrakis(1‐ethylpropoxy)phthalocyaninato) were prepared as racemic mixtures by [MIII(pc)(acac)]‐induced (acac=acetylacetonato) cyclic tetramerization of 3‐(1‐ethylpropoxy)phthalonitrile in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in refluxing pentanol. These compounds could also be prepared by treating [MIII(pc)(acac)] with the metal‐free phthalocyanine H2{pc(α‐OC5H11)4} in refluxing octanol. The whole series of double‐decker complexes 1 – 11 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of the Sm, Eu, and Er complexes 1, 2 , and 8 , respectively, were also determined by single‐crystal X‐ray diffraction analysis. The effects of the rare earth ion size on the reaction yield, molecular structure, and spectroscopic and electrochemical properties of these complexes were systematically examined.  相似文献   

6.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

7.
Based on the tripodal 1,3,5‐tris(imidazol‐1‐yl)benzene (tib) ligand, four transition metal coordination polymers, namely, {[Ni3(tib)2(H2O)12] · (SO4)3}n ( 1 ), {[Co1/6(tib)1/3] · (O)1/3}n ( 2 ), and [M(tib)(hip)]n (M = Mn for 3 , and M = Co for 4 ) (hip = 5‐hydroxyisophthalic acid), were synthesized through solvothermal method. Their structures were defined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectra, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complex 1 displays a 2D 3‐connected (63) hcb net. Complex 2 is a 2D (3,6)‐connected (43)2(46.66.83) kgm net. Complex 3 and 4 present similar 2D 4‐connected (44.62) sql net. Moreover, the solid state luminescence properties of complexes 1 and 3 were investigated.  相似文献   

8.
A series of di‐ and tetraamide derivatives of DOTA were synthesized, and their lanthanide(III) complexes were examined by multinuclear 1H‐, 13C‐, and 17O‐NMR spectroscopy, and compared with literature data of similar, known complexes (Table). All ligands formed structures similar to the parent [LnIII(DOTA)]? complexes, with four N‐atoms and four O‐atoms from DOTA and one O‐atom from the inner‐sphere water molecules. Interestingly, the lifetimes τM of the inner‐sphere, metal‐bound water molecules vary widely, ranging from nano‐ to milliseconds, depending on the identity of the pendent amide side chains. In general, positively charged [LnIII(DOTA‐tetraamide)]3+ complexes display the longest residence times (high τM values), while complexes with additional charged functional groups on the extended amides display much smaller τM values, even when the side groups are not directly coordinated to the central Ln3+ ions. The design of novel [LnIII(DOTA‐tetraamide)]3+ complexes with a wide, tunable range of τM values is of prime importance for the application of fast‐responding, paramagnetic chemical‐exchange‐saturation‐transfer (PARACEST) imaging agents used for the study of physiological and metabolic processes.  相似文献   

9.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

10.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

11.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

12.
The title compound, {[CoLi2(C11H14N2O8)(H2O)3]·2H2O}n, constitutes the first example of a salt of the [MII(1,3‐pdta)]2− complex (1,3‐pdta is propane‐1,3‐diyldinitrilotetraacetate) with a monopositive cation as counter‐ion. Insertion of the Li+ cation could only be achieved through application of the ion‐exchange column technique which, however, appeared unsuccessful with other alkali metals and the ammonium cation. The structure contains two tetrahedrally coordinated Li+ cations, an octahedral [Co(1,3‐pdta)]2− anion and five water molecules, two of which are uncoordinated, and is built of two‐dimensional layers extending parallel to the (010) lattice plane, the constituents of which are connected by the coordinate bonds. O—Hwater...O hydrogen bonds operate both within and between these layers. The crystal investigated belongs to the enantiomeric space group P21 with only one (Λ) of two possible optical isomers of the [Co(1,3‐pdta)]2− complex. A possible cause of enantiomer separation during crystallization might be the rigidification and polarization of the [M(1,3‐pdta)]2− core, resulting from direct coordination of Li+ cations to three out of four carboxylate groups constituting the 1,3‐pdta ligand. The structure of (I) differs considerably from those of the other [MII(1,3‐pdta)]2− complexes, in which the charge compensation is realized by means of divalent hexaaqua complex cations. This finding demonstrates a significant structure‐determining role of the counter‐ions.  相似文献   

13.
Four novel 2D complexes M2(Hptim)2(HBTC)2 [M = Co ( 1 ), Cd ( 2 ), Zn ( 3 ), Mn ( 4 ); Hptim = 2,4,5‐tri(4‐pyridyl)‐imidazole; HBTC2– = Benzene‐1,3,5‐tricarboxylic acid] were synthesized under solvothermal conditions. The four complexes are isomorphous and present a unique structure with a 1D ladder of [Co2(HBTC)2]n. The 2D network structure of 1 is achieved through bridging Hptim groups, which coordinate to the metal atoms of two adjacent 1D [Co2(HBTC)2]n ladders. Magnetic measurements reveal that dominant antiferromagnetic coupling was observed in compounds 1 and 4 . Compounds 2 and 3 both exhibit strong fluorescent emissions in the solid state and may be suitable candidates for fluorescent materials.  相似文献   

14.
The dihalomethanes CH2X2 (X=Cl, Br, I) were co‐crystallized with the isocyanide complexes trans‐[MXM2(CNC6H4‐4‐XC)2] (M=Pd, Pt; XM=Br, I; XC=F, Cl, Br) to give an extended series comprising 15 X‐ray structures of isostructural adducts featuring 1D metal‐involving hexagon‐like arrays. In these structures, CH2X2 behave as bent bifunctional XB/XB‐donating building blocks, whereas trans‐[MXM2(CNC6H4‐4‐XC)2] act as a linear XB/XB acceptors. Results of DFT calculations indicate that all XCH2–X???XM–M contacts are typical noncovalent interactions with estimated strengths in the range of 1.3–3.2 kcal mol?1. A CCDC search reveals that hexagon‐like arrays are rather common but previously overlooked structural motives for adducts of trans‐bis(halide) complexes and halomethanes.  相似文献   

15.
The synthesis and characterization of aluminum alkoxide and alkyl complexes stabilized by piperazidine‐bridged bis(phenolate) ligands are described. Treatment of ligand precursors H2[ONNO]1 {H2[ONNO]1=1,4‐bis(2‐hydroxy‐3‐tert‐butyl‐5‐methylbenzyl)piperazidine} and H2[ONNO]2 {H2[ONNO]2=1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)piperazidine} with AlEt2(OCH2Ph) and AlEt2(OPr‐i), which were generated in situ by the reactions of AlEt3 with equivalent of the corresponding alcohols, in a 1:1 molar ratio in THF gave the corresponding aluminum alkoxide complexes [ONNO]1Al(OCH2Ph) ( 1 ) and [ONNO]2Al(OPr‐i) ( 2 ), respectively. The reaction of H2[ONNO]1 with AlEt2(OCH2Ph) in a 1:2 molar ratio in THF afforded a mixture of monometallic aluminum ethyl complex [ONNO]1AlEt ( 3 ) and complex 1 , which can be isolated by stepwise crystallization. Similarly, H2[ONNO]2 reacted with AlEt2(OPr‐i) in a 1:2 molar ratio in THF to give a mixture of aluminum ethyl complex [ONNO]2AlEt ( 4 ) and complex 2 . Complexes 1 and 2 were also available via treatment of complexes 3 and 4 with 1 equiv. of benzyl alcohol and isopropyl alcohol, respectively. All of these complexes were fully characterized including X‐ray structural determination. It was found that complexes 1 to 4 can initiate the ring‐opening polymerization of ε‐caprolactone, and complexes 1 and 2 showed higher catalytic activity in comparison with complexes 3 and 4 .  相似文献   

16.
Formation, crystal structure, polymorphism, and transition between polymorphs are reported for M(thd)3, (M = Al, Cr, Mn, Fe, Co, Ga, and In) [(thd) = anion of H(thd) = C11H20O2 = 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione]. Fresh crystal‐structure data are provided for monoclinic polymorphs of Al(thd)3, Ga(thd)3, and In(thd)3. Apart from adjustment of the M–Ok bond length, the structural characteristics of M(thd)3 complexes remain essentially unaffected by change of M. Analysis of the M–Ok, Ok–Ck, and Ck–Ck distances support the notion that the M–Ok–Ck–Ck–Ck–Ok– ring forms a heterocyclic unit with σ and π contributions to the bonds. Tentative assessments according to the bond‐valence or bond‐order scheme suggest that the strengths of the σ bonds are approximately equal for the M–Ok, Ok–Ck, and Ck–Ck bonds, whereas the π component of the M–Ok bonds is small compared with those for the Ok–Ck, and Ck–Ck bonds. The contours of a pattern for the occurrence of M(thd)3 polymorphs suggest that polymorphs with structures of orthorhombic or higher symmetry are favored on crystallization from the vapor phase (viz. sublimation). Monoclinic polymorphs prefer crystallization from solution at temperatures closer to ambient. Each of the M(thd)3 complexes subject to this study exhibits three or more polymorphs (further variants are likely to emerge consequent on systematic exploration of the crystallization conditions). High‐temperature powder X‐ray diffraction shows that the monoclinic polymorphs convert irreversibly to the corresponding rotational disordered orthorhombic variant above some 100–150 °C (depending on M). The orthorhombic variant is in turn transformed into polymorphs of tetragonal and cubic symmetry before entering the molten state. These findings are discussed in light of the current conceptions of rotational disorder in molecular crystals.  相似文献   

17.
[Tc(NPh)Cl3(PPh3)2] or [Re(NPh)Cl3(PPh3)2] react with two equivalents of Na2mnt (mnt2– = 1,2‐dicyanoethene‐1,2‐dithiolate) with formation of anionic complexes of the composition [M(NPh)(mnt)2]. The products can be isolated as large red blocks of their AsPh4+ salts. The complex anions contain square‐pyramidal coordinated metal atoms with the phenylimido ligands in apical positions. The M–N–C bonds are almost linear. A similar phenylimido complex with an additional amino group was synthesized from [Re(NC6H4‐4‐NH2)Cl3(PPh3)2]. The presence of such substituents may allow coupling of the metal complexes to biomolecules such as peptides, proteins, or sugars, provided the M=N bonds are sufficiently stable against hydrolysis.  相似文献   

18.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

19.
Two complexes, cis‐[MnL2(NCS)2] ( 1 ) and cis‐[ZnL2(NCS)2] ( 2 ) with asymmetrical substituted triazole ligands [L = 3,4‐dimethyl‐5‐(2‐pyridyl)‐1,2,4‐triazole], were synthesized and characterized by elemental analysis, UV/Vis and FT‐IR spectroscopy as well as thermogravimetric analyses (TGA), powder XRD, and single‐crystal X‐ray diffraction. In the complexes, each L molecule adopts a chelating bidentate mode by the nitrogen atoms of pyridyl and triazole. Both complexes have a similar distorted octahedral [MN6] core (M = Mn2+ and Zn2+) with two NCS ions in the cis position.  相似文献   

20.
Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans‐[MIVF4(CN)2]2? (M=Re, Os), obtained from their homoleptic [MIVF6]2? parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans‐[ReF4(CN)2]2? as compared to [ReF6]2?, reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号