首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The first examples of rare‐earth polyiodates, namely, REI5O14 (RE=Y and Gd), have been prepared by hydrothermal reactions of RE2O3 and H5IO6 in H3PO4 (≥85 wt % in H2O), with extremely high yields (>95 %). They crystalize in the polar space group Cm and feature a brand‐new semicircle‐shaped [I5O14]3? pentameric polyiodate anion composed of two IO3 and three IO4 polyhedra. Remarkably, both compounds exhibit very large second‐harmonic generation (SHG) signals (14× and 15×KH2PO4 (KDP) upon 1064 nm laser radiation for Y and Gd compounds, respectively). Our work shows that the hydrothermal reaction in a phosphoric acid medium facilitates the formation of rare‐earth polyiodates.  相似文献   

2.
Through systematic experiments, two novel mercury iodate sulfates, namely, Hg2(IO3)2(SO4)(H2O) and Hg2(IO3)2(SO4) were obtained. They crystallize in monoclinic space group C2 and C2/c, respectively. Hg2(IO3)2(SO4)(H2O) exhibits the [Hg(IO3)]+ polar cationic layer inherited from Hg(IO3)2 and the three-dimensional (3D) framework inherited from HgSO4. This enables Hg2(IO3)2(SO4)(H2O) to generate a strong second harmonic generation (SHG) response of 6 times that of KH2PO4 (KDP). The structure of Hg2(IO3)2(SO4) is very similar to that of Hg2(IO3)2(SO4)(H2O), and they can be transformed into each other. Hg2(IO3)2(SO4)(H2O) shows a large optical band gap of 3.98 eV and a high dehydration temperature of 250 °C. This study indicates that by reasonable design, the introduction of multiple functional groups into a compound may combine their advantages to achieve good overall optical performance.  相似文献   

3.
Excellent nonlinear optical materials simultaneously meet the requirements of large SHG response, phase‐matching capability, wide transparency windows, considerable energy band‐gap, good thermal stability and structure stability. Herein, two new promising nonlinear optical (NLO) crystals LiMII(IO3)3 (MII=Zn and Cd) are rationally designed by the aliovalent substitution strategy from the commercialized α‐LiIO3 with the perfect parallel alignment of IO3 groups. Compared with parent α‐LiIO3 and related AI2MIV(IO3)6, the title compounds exhibit more stable covalent 3D structure, and overcome the racemic twinning problem of AI2MIV(IO3)6. More importantly, both compounds inherit NLO‐favorable structure merits of α‐LiIO3 and show larger SHG response (≈14× and ≈12×KDP), shorter absorption edge (294 and 297 nm) with wider energy band‐gap (4.21 and 4.18 eV), good thermal stability (460 and 430 °C), phase‐matching behaviors, wider optical transparency window and good structure stability, achieving an excellent balance of NLO properties.  相似文献   

4.
Two new polar potassium gold iodates, namely, K2Au(IO3)5 (Cmc21) and β‐KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero‐dimensional polar [Au(IO3)4]? units composed of an AuO4 square‐planar unit coordinated by four IO3? ions in a monodentate fashion. In β‐KAu(IO3)4, isolated [Au(IO3)4]? ions are separated by K+ ions, whereas in K2Au(IO3)5, isolated [Au(IO3)4]? ions and non‐coordinated IO3? units are separated by K+ ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800–2500 nm) with measured optical band gaps of 2.65 eV for K2Au(IO3)5 and 2.75 eV for β‐KAu(IO3)4. Powder second‐harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2Au(IO3)5 and β‐KAu(IO3)4 are both phase‐matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units.  相似文献   

5.
The present work describes reduction of iodate (IO3?), and periodate (IO4?) at silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film coated glassy carbon electrode in 0.1 M H2SO4. In our previous study, we were able to prepare the PLL‐GA‐SiMo film modified electrode by means of electrostatically trapping SiMo12O404? mediator in the cationic film of PLL‐GA, and the voltammetric investigation in pure supporting indicated that the charge transport through the film was fast. Here, the electrocatalytic activity of PLL‐GA‐SiMo film electrode towards iodate and periodate was tested and subsequently used for analytical determination of these analytes by amperometry. The two electron reduced species of SiMo12O404? anion was responsible for the electrocatalytic reduction of IO3? at PLL‐GA‐SiMo film electrode while two and six electron reduced species were showed electrocatalytic activity towards IO4? reduction. Under optimized experimental conditions of amperometry, the linear concentration range and sensitivity are 2.5×10?6 to 1.1×10?2 M and 18.47 μA mM?1 for iodate, and 5×10?6 to 1.43×10?4 M and 1014.7 μA mM?1 for periodate, respectively.  相似文献   

6.
Amine‐templated zinc sulfates of the formulae, [Zn(SO4)(H2O)2(C10N2H8)] ( I ) and [C3N2H12][Zn(SO4)] ( II ) both with linear structures have been prepared under hydro/solvothermal conditions. Of these, I has the chain structure formed by ZnO4N2octahedra and SO4 tetrahedra, while II comprises ladders formed by corner‐sharing four‐membered rings. Amine‐templated thorium sulfates of the formula [HN(CH2)6NH]2[Th2(SO4)6(H2O)2]·2H2O, ( III ) and [H2N(CH2)4NH2][Th3(SO4)7(H2O)4]·5H2O ( IV ) are also obtained under hydrothermal conditions. III has a sheet structure consisting of cages whereas IV has a two‐dimensional structure derived from the connectivity of ladders.  相似文献   

7.
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) ( 3 and 4 ) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials.  相似文献   

8.
The first series of niobium–tungsten–lanthanide (Nb‐W‐Ln) heterometallic polyoxometalates {Ln12W12O36(H2O)24(Nb6O19)12} (Ln=Y, La, Sm, Eu, Yb) have been obtained, which are comprised of giant cluster‐in‐cluster‐like ({Ln12W12}‐in‐{Nb72}) structures built from 12 hexaniobate {Nb6O19} clusters gathered together by a rare 24‐nuclearity sodalite‐type heterometal–oxide cage {Ln12W12O36(H2O)24}. The Nb‐W‐Ln clusters present the largest multi‐metal polyoxoniobates and a series of rare high‐nuclearity 4d‐5d‐4f multicomponent clusters. Furthermore, the giant Nb‐W‐Ln clusters may be isolated as discrete inorganic alkali salts and can be used as building blocks to form high‐dimensional inorganic–organic hybrid frameworks.  相似文献   

9.
A protein‐sized (ca. 4.2×4.2×3.6 nm3) non‐biologically derived molecule {Nb288O768(OH)48(CO3)12} ( Nb288 ) containing up to 288 niobium atoms has been obtained, which is by far the largest and the highest nuclearity polyoxoniobate (PONb). Particularly, in terms of metal nuclearity number, Nb288 is the second largest cluster so far reported in classic polyoxometalate chemistry (V, Mo, W, Nb, and Ta). Nb288 can be described as a giant windmill‐like cluster aggregate of six nanoscale high‐nuclearity PONb units {Nb47O128(OH)6(CO3)2} ( Nb47 ) joined together by six additional Nb ions. Interestingly, the 47‐nuclearity Nb47 units generated in situ can be isolated and bridged by copper complexes to form an inorganic–organic hybrid three‐dimensional PONb framework, which exhibits effective catalytic activity for hydrolyzing nerve agent simulant of dimethyl methylphosphonate. The unique Nb47 cluster also provides a new type of topology to very limited family of Nb‐O clusters.  相似文献   

10.
Summary It has been established(1) that hydrated niobium(V) oxide is, in fact, hexameric isopolyniobic acid, H8Nb6O19·xH2O, containing a protonated oxoniobate(V) cluster. It has also been shown(2,3) that the stoichiometric and nonstoichiometric oxides as well as niobates, soluble or insoluble, formed under various conditions, are really derivatives of H8Nb6O19. The amphoteric H8Nb6O19 is soluble in conc. H2SO4 maintaining its hexanuclear structure(4) and exists in the form of a SO3 adduct of H8Nb6O19. In the latest communication(5) the hexameric cluster has been shown to exist even in the subnormal niobium oxidation states. The aqueous H2SO4 solution of niobium(V) when reduced with zinc forms various dark red-brown crystalline salts of the anion [Nb6O7(O·SO3)12]16–. This cluster anion has niobium in an average nonintegral oxidation state of +3.67 and the Nb6O19 unit is coordinated to a maximum of twelve SO3 groups. The present communication describes the potentiometric investigation of the reduced oxoniobate cluster in aqueous HCl. There are reports that strongly acidic niobium(V) solutions are reduced either electrolytically or by metals(6–9). These workers proposed that niobium(III) was formed in solution although no detailed investigation on the species was made.  相似文献   

11.
An ammonium‐containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two‐dimensional double‐layered framework constructed by [BiO2F5]6? and [BiO4F4]9? polyhedra, as well as [IO3]? groups, was successfully synthesized. The well‐ordered alignment of these SHG‐active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   

12.
Two new peroxoniobophosphate clusters were isolated as tetramethylammonium (TMA) salts having the stoichiometries: TMA5[HNb4P2O14(O2)4]?9 H2O and TMA3[H7Nb6P4O24(O2)6]?7 H2O. The former is stable over the pH range: 3<pH<12 and the latter is stable only below pH 3. These two molecules interconvert as a function of solution pH. The [H7Nb6P4O24(O2)6]3? cluster can be used to fabricate patterned niobium phosphate films by electron‐beam lithography after solution deposition.  相似文献   

13.
Organically templated metal sulfates are relatively new. Six amine‐templated transition‐metal sulfates with different types of chain structures, including a novel iron sulfate with a chain structure corresponding to one half of the kagome structure, were synthesized by hydro/solvothermal methods. Amongst the one‐dimensional metal sulfates, [C10N2H10][Zn(SO4)Cl2] ( 1 ) is the simplest, being formed by corner‐linked ZnO2Cl2 and SO4 tetrahedra. [C6N2H18][Mn(SO4)2(H2O)2] ( 2 ) and [C2N2H10][Ni(SO4)2(H2O)2] ( 3 ) have ladder structures comprising four‐membered rings formed by SO4 tetrahedra and metal–oxygen octahedra, just as in the mineral kröhnkite. [C4N2H12][VIII(OH)(SO4)2]?H2O ( 4 ) and [C4N2H12][VF3(SO4)] ( 5 ) exhibit chain topologies of the minerals tancoite and butlerite, respectively. The structure of [C4N2H12][H3O][FeIIIFeII F6(SO4)] ( 6 ) is noteworthy in that it corresponds to half of the hexagonal kagome structure. It exhibits ferrimagnetic properties at low temperatures and the absence of frustration, unlike the mixed‐valent iron sulfate with the full kagome structure.  相似文献   

14.
15.
Syntheses, crystal structures and thermal behavior of two new hydrated cerium(III) sulfates are reported, Ce2(SO4)3·4H2O ( I ) and β‐Ce2(SO4)3·8H2O ( II ), both forming three‐dimensional networks. Compound I crystallizes in the space group P21/n. There are two non‐equivalent cerium atoms in the structure of I , one nine‐ and one ten‐fold coordinated to oxygen atoms. The cerium polyhedra are edge sharing, forming helically propagating chains, held together by sulfate groups. The structure is compact, all the sulfate groups are edge‐sharing with cerium polyhedra and one third of the oxygen atoms, belonging to sulfate groups, are in the S–Oμ3–Ce2 bonding mode. Compound II constitutes a new structure type among the octahydrated rare‐earth sulfates which belongs to the space group Pn. Each cerium atom is in contact with nine oxygen atoms, these belong to four water molecules, three corner sharing and one edge sharing sulfate groups. The crystal structure is built up by layers of [Ce(H2O)4(SO4)]nn+ held together by doubly edge sharing sulfate groups. The dehydration of II is a three step process, forming Ce2(SO4)3·5H2O, Ce2(SO4)3·4H2O and Ce2(SO4)3, respectively. During the oxidative decomposition of the anhydrous form, Ce2(SO4)3, into the final product CeO2, small amount of CeO(SO4) as an intermediate species was detected.  相似文献   

16.
Two new thallium iodates have been synthesized, Tl(IO3)3 and Tl4(IO3)6 [Tl+3Tl3+(IO3)6], and characterized by single-crystal X-ray diffraction. Both materials were synthesized as phase-pure compounds through hydrothermal techniques using Tl2CO3 and HIO3 as reagents. The materials crystallize in space groups R-3 (Tl(IO3)3) and P-1 (Tl4(IO3)6). Although lone-pairs are observed for both I5+ and Tl+, electronic structure calculations indicate the lone-pair on I5+ is stereo-active, whereas the lone-pair on Tl+ is inert.  相似文献   

17.
Contributions to the Investigation of Inorganic Non-stoichiometric Compounds. XIV. Oxidation Products of Orthorhombic Nb12O29, Electron Optical Investigation An electron optical investigation shows that the orthorhombic starting material Nb12O29(BII) is well ordered. The oxidation products Nb2O5(Ox1BII) and Nb2O5(Ox2BII) are different from each other in structures as well as in their reactions. Nb2O5(Ox1BII) is unstable in the electron beam and differs from BII by characteristic point-defects. The radiation load can lead to the reduction to BII or to a transition into a defect structure with R-type-tunnels. The not well ordered structure of Nb2O5(Ox2BII) is stable in the electron beam. Characteristic is the sequence of [2×5] and [3×4] blocks, the latter in two different orientations. The observed composition O/Nb = 2.500 can be described by the present structural modell assuming vacant niobium tetrahedral sites. The large structural differences between the oxidation products of the orthorhombic and the monoclinic Nb12O29 are remarkable.  相似文献   

18.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

19.
The first four examples of organic‐inorganic hybrid lanthanide‐silver heterometallic frameworks, namely, [AgLn5‐C2O4)(SO4)(H2O)2] [Ln = Eu ( 1 ) and Sm ( 2 )] and [AgLn4‐C2O4)0.56‐C2O4)0.5(SO4)(H2O)] [Ln = Tb ( 3 ) and Dy ( 4 )] based on oxalate and sulfate anions were synthesized by hydrothermal reactions of lanthanide oxide, silver nitrate, oxalic acid and sulfuric acid. All structures contain ladder‐like inorganic lanthanide sulfato chains, which are further connected together through silver atoms by oxalate anions with different coordination behavior (μ5‐C2O4: 1 and 2 , μ6‐C2O4 mixed μ4‐C2O4: 3 and 4 ) to generate two types of 3D networks. The luminescent properties of these compounds were also studied.  相似文献   

20.
Syntheses and Crystal Structures of Novel Chalcogenido‐bridged Niobium Copper Clusters In the presence of tertiary phosphines, the reaction of NbCl5 and Copper(I) salts with Se(SiMe3)2 (E = S, Se) affords the new chalcogenido‐bridged niobium‐copper cluster compounds ( 1 ) and [NbCu4Se4Cl (PPh3)4] ( 2 ). Using E(R)SiMe3 (E = S, Se, R = Ph, nPr) instead of the bisilylated selenium species leads to the compounds [NbCu2(SPh)6(PMe3)2] ( 3 ), [NbCu2(SPh)6(PnPr3)2] ( 4 ), [NbCu2(SePh)6(PMe3)2] ( 5 ), [NbCu2(SePh)6(PnPr3)2] ( 6 ), [NbCu2(SePh)6(PiPr3)2] ( 7 ), [NbCu2(SePh)6(PtBu3)2] ( 8 ), [NbCu2(SePh)6(PiPr2Me)2] ( 9 ), [NbCu2(SePh)6(PPhEt2)2] ( 10 ), [Nb2Cu2(SnPr)8(PnPr3)2Cl2] ( 11 ) and [Nb2Cu6(SnPr)12(PiPr3)2Cl4]·2 CH3CN ( 12 ·2 CH3CN). By reacting CuI salts and NbCl5 with the monosilylated selenides Se(tBu)SiMe3 and Se(iPr)SiMe3 which have a weak Se–C bond the products [Nb2Cu6Se6(PiPr3)6Cl4] ( 13 ), [Nb2Cu4Se2(SeiPr)6(PnPr3)4Cl2] ( 14 ) and [Nb2Cu6Se2(SeiPr)10(PEt2Me)2Cl2]·DME ( 15 ) are formed which contain selenide as well as alkylselenolate ligands. The molecular structures of all of these new compounds were determined by single crystal X‐ray diffraction measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号