首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In situ near infrared (NIR) spectroscopy is performed simultaneously with automatic continuous online monitoring of polymerization reactions (ACOMP) during methyl methacrylate polymerization. ACOMP is an absolute technique that furnishes weight average molecular mass Mw, intrinsic viscosity, monomer conversion, and other characteristics, whereas NIR furnishes monomer conversion data via an empirical calibration. An advantage of in situ NIR is that it furnishes immediate information on the conversion in the reactor, whereas ACOMP relies on continuous withdrawal and dilution of a small stream of reactor fluid, so that there is a lag time of several minutes between what ACOMP reports and what is occurring in the reactor. Simultaneous monomer conversion data from in situ NIR and ACOMP, the latter derived from both refractive index and UV absorption, are compared and found to be in good agreement. The evolution of conversion kinetics and Mw generally conform to the predictions of the Quasi-Steady State Approximation. Having established the agreement between the methods, the path is now open for combining NIR with ACOMP to characterize increasingly complex systems, such as copolymerization with two or more monomeric species, that are not feasible by either technique separately.  相似文献   

2.
Online monitoring of polymerization reactions in inverse emulsions   总被引:2,自引:0,他引:2  
Automatic continuous online monitoring of polymerization reactions (ACOMP) was adapted to the monitoring of acrylamide polymerization in inverse emulsions. This is the first application of ACOMP to heterogeneous phase polymerization. The conversion and reduced viscosity were monitored by continuously inverting and diluting the emulsion phase using a small reactor sample stream and a breaker surfactant solution, followed by UV absorption and viscometric detection. This inversion into a stable portion of the polymer/surfactant phase diagram is accomplished in tens of seconds, yielding dilute solutions containing acrylamide (Aam), polyacrylamide (PA), oil droplets, and small quantities of surfactant, initiator and other debris, and low molecular weight compounds. After establishing the means of making ACOMP measurements, a first application of the method is made to resolving some of the kinetic issues involved in emulsion polymerization, including the evolution of molecular mass, and the simultaneous action of an "intrinsic" initiator and an added chemical initiator.  相似文献   

3.
ACOMP allows comprehensive, model-independent, near realtime monitoring of many different types of polymerization reactions. It provides conversion kinetics, and the evolution of average molar mass, intrinsic viscosity and average composition distributions (for copolymers). Here, recent advances in ACOMP will be summarized, dealing with continuous reactors, copolymerization, ‘living’ type reactions (NMP, RAFT, ATRP, ROMP), polyelectrolytes, heterogeneous phase reactions, including free radical reactions in emulsions, and predictive control. In the case of emulsion polymerization, a new approach will be presented in which the evolution of the characteristics of both the soluble phase – monomer conversion, polymer molar mass and intrinsic viscosity- and the dispersed phase – particle size – are simultaneously monitored. NSF CBET 0623531, BoR ITRS 019B, NASA NCC3-946, TIMES, PolyRMC (Tulane Center for Polymer Reaction Monitoring and Characterization).  相似文献   

4.
Fundamental measurements in online polymerization reaction monitoring and control seek to avoid empirical and inferential models in data interpretation. One such approach making use of multiple detectors is automatic continuous online monitoring of polymerization reactions (ACOMP), wherein a continuous reactor stream is automatically, continuously diluted and conditioned to where measurements reflect intrinsic particle properties and not the interactions that can dominate measurements in concentrated media. Examples where dilute regime measurements are needed include static and dynamic light scattering, and reduced viscosity. This review focuses on ACOMP to illustrate a number of reaction contexts where fundamental measurements are used to gain a comprehensive picture of reaction characteristics.

  相似文献   


5.
The synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006  相似文献   

6.
The synthesis of a model cyclic triblock terpolymer [cyclic(S‐b‐I‐b‐MMA] of styrene (S), isoprene (I), and methyl methacrylate (MMA) was achieved by the end‐to‐end intramolecular amidation reaction of the corresponding linear α,ω‐amino acid precursor [S‐b‐I‐b‐MMA] under high‐dilution conditions. The linear precursor was synthesized by the sequential anionic polymerization of S, I, and MMA with 2,2,5,5‐tetramethyl‐1‐(3‐lithiopropyl)‐1‐aza‐2,5‐disilacyclopentane as an initiator and amine generator and 4‐bromo‐1,1,1‐trimethoxybutane as a terminator and carboxylic acid generator. The separation of the unreacted linear polymer from the cyclic terpolymer was facilitated by the transformation of the unreacted species into high molecular weight polymers by the evaporation of the reaction solvent and the continuation of the reaction under high‐concentration conditions. The intermediate materials and the final cyclic terpolymer, characterized by size exclusion chromatography, vapor pressure osmometry, thin‐layer chromatography, IR and NMR spectroscopy, exhibited high molecular weight and compositional homogeneity. Dilute‐solution viscosity measurements were used as an additional proof of the cyclic structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1476–1483, 2002  相似文献   

7.
The kinetics; evolution of molar mass; solution conductivity, sigma; intrinsic viscosity; and average composition drift; and distribution were determined by monitoring the synthesis of copolymeric polycations of acrylamide (Am) and [2-(acryloyloxy)ethyl]-trimethylammonium chloride (Q9). The quantitative relationship between diminishing sigma and charged co-monomers incorporation was monitored for the first time and provided novel data on counterion condensation, which occurs gradually over a broad composition regime. This new capability allows predictions concerning the relationship between copolymer composition and linear charge density, xi, to be tested and models of trivariate mass, composition, and xi distributions to be built. This approach, hence, brings together the previously disparate fields of synthetic chemistry of copolymers and physical chemical properties of polyelectrolytes. Monitoring was achieved with a new implementation of the ACOMP (automatic continuous online monitoring of polymerization reactions) platform. Reactivity ratios determined by ACOMP were rQ9 = 0.47 and rAm = 1.10. Opposite trends in composition drift and final molar mass were found; low starting percentage of Q9 led to low composition drift and high molar mass, whereas the opposite was found at high starting percentage of Q9. Complementary end-product analysis by multidetector gel permeation chromatography supported the ACOMP results. End-product polyelectrolyte properties were characterized by automatic continuous mixing, revealing that combined electrostatic persistence length and excluded volume effects led to the expected large changes in polyelectrolyte conformation and interactions. These results set the groundwork for semibatch control of molar mass, composition, and xi, and eventually for monitoring and control for inverse emulsion-based reactions of this type.  相似文献   

8.
高分子量的枝状聚硅烷的合成与表征   总被引:3,自引:0,他引:3  
根据硅氢加成反应机理设计了“顺点滴式”工艺 ,高效、低耗地合成了甲基苯乙基二氯硅烷和甲基正己基二氯硅烷 .根据Wurtz还原偶联反应原理 ,采用“预聚”和“混聚”两种工艺分别合成枝状共聚硅烷 ,发现运用“预聚”工艺可以合成分子量很高的枝状聚硅烷 .  相似文献   

9.
Photoregulated polymerizations are typically conducted using high‐energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near‐infrared (NIR) and far‐red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization. Well‐defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far‐red (λ=780 nm) irradiation with excellent control over the molecular weight (Mn/Mw<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel.  相似文献   

10.
Scandium p-tert-butylcalix[6]arene complex has been synthesized from scandium isopropoxide and p-tert-butylcalix[6]arene and used as a single component initiator for the first time. The polymerization of 2,2-dimethyltrimethylene carbonate (DTC) using this complex can proceed under mild conditions. Poly (2,2-dimethyltrimethylene carbonate) (PolyDTC) with weight-average molecular weight of 33700 and molecular weight distribution of 1.21 can be prepared. Kinetics study indicates that the polymeri- zation rate is first order with respect to both monomer and initiator concentrations, and the apparent activation energy of the polymerization is 22.7 kJ/mol. 1H NMR spectrum of the polymer reveals that the monomer ring opens via acyl-oxygen bond cleavage leading to an active center of Sc-O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号