首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Several syntheses have already been reported for cis‐trikentrins and herbindoles, which are indole alkaloids unsubstituted at the C2 and C3 positions that bear a trans‐1,3‐dimethylcyclopentyl unit. Herein, we describe the first asymmetric and stereoselective synthesis of the more challenging trans‐trikentrin A as its naturally occurring isomer. Different approaches were investigated and the strategy of choice was a combination of an enzymatic kinetic resolution and a thallium(III)‐mediated ring contraction. The antiproliferative activities of the natural product and related intermediates have been tested against human tumor cell lines, leading to the discovery of new compounds with potent antitumor activity.  相似文献   

2.
The bioactive Kopsia alkaloids lundurines A–D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (?)‐lundurine A has previously been achieved through a Simmons–Smith cyclopropanation strategy. Here, the total synthesis of (?)‐lundurine A was carried out using a metal‐catalyzed diazo cyclopropanation strategy. In order to avoid a carbene C?H insertion side reaction during cyclopropanation of α‐diazo‐ carboxylates or cyanides, a one‐pot, copper‐catalyzed Bamford–Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7.  相似文献   

3.
A highly efficient 12‐step synthesis of the marine alkaloid (?)‐nakadomarin A has been accomplished. The key advanced intermediate, a tetracyclic ketone derivative, was constructed in just seven steps using a sequence that includes an asymmetric Pauson–Khand reaction, an Overman rearrangement reaction, a ring‐closing metathesis reaction, and an amination reaction. Late introduction of the furan ring during the synthesis of (?)‐nakadomarin A means that the key tetracyclic ketone derivative has the potential to serve as an advanced intermediate for the synthesis of related marine alkaloids.  相似文献   

4.
The total synthesis of representative members of the schizozygine alkaloids, (+)‐vallesamidine and (+)‐14,15‐dehydrostrempeliopine, were completed from a late‐stage divergent intermediate. The synthesis took advantage of efficient nitro‐group reactions with the A/B/C ring skeleton constructed concisely on a gram scale through an asymmetric Michael addition, nitro‐Mannich/lactamisation, Tsuji–Trost allylation, and intramolecular C?N coupling reaction. Other key features of the synthesis are a novel [1,4] hydride transfer/Mannich‐type cyclisation to build ring E and a diastereoselective ring‐closing metathesis reaction to construct ring D. This approach gave access to a late‐stage C14,C15 alkene divergent intermediate that could be simply transformed into (+)‐vallesamidine, (+)‐14,15‐dehydrostrempeliopine, and potentially other schizozygine alkaloids and unnatural derivatives.  相似文献   

5.
We report an efficient and highly stereoselective strategy for the synthesis of Aspidosperma alkaloids based on the transannular cyclization of a chiral lactam precursor. Three new stereocenters are formed in this key step with excellent diastereoselectivity due to the conformational bias of the cyclization precursor, leading to a versatile pentacyclic intermediate. A subsequent stereoselective epoxidation followed by a mild formamide reduction enabled the first total synthesis of the Aspidosperma alkaloids (?)‐mehranine and (+)‐(6S,7S)‐dihydroxy‐N‐methylaspidospermidine. A late‐stage dimerization of (?)‐mehranine mediated by scandium trifluoromethanesulfonate completed the first total synthesis of (?)‐methylenebismehranine.  相似文献   

6.
A reaction cascade of aza‐Achmatowicz rearrangement followed by indole nucleophilic cyclization was developed to generate the common indole‐fused azabicyclo[3.3.1]nonane core of the macroline family alkaloids. The key to the success of the strategy relies on the careful manipulation of protecting groups and judicious selection of chemoselective furan oxidation conditions. The synthetic utility was further demonstrated on the asymmetric total synthesis of (?)‐alstofolinine A.  相似文献   

7.
A route for the asymmetric synthesis of (?)‐stenine, a member of the Stemona alkaloid family used as folk medicine in Asian countries, is described. The key features of the sequence employed include stereoselective transformations on a cyclohexane ring controlled by a chiral auxiliary unit and an intramolecular Mitsunobu reaction to construct the perhydroindole ring system. By using an intermediate in the route to (?)‐stenine, an asymmetric synthesis of 9a‐epi‐stenine was also executed. The C(9a) stereocenter in 9a‐epi‐stenine was installed by using a Staudinger/aza‐Wittig reaction of a keto–azide precursor followed by reduction of the resulting imine. The results of this effort demonstrate the applicability of the chiral auxiliary based strategy to the preparation of naturally occurring alkaloids that contain highly functionalized cyclohexane cores.  相似文献   

8.
Assoanine, pratosine, hippadine, and dehydroanhydrolycorine belong to the pyrrolophenanthridine family of alkaloids, which are isolated from plants of the Amaryllidaceae species. Structurally, these alkaloids are characterized by a tetracyclic skeleton that contains a biaryl moiety and an indole core, and compounds belonging to this class have received considerable interest from researchers in a number of fields because of their biological properties and the challenges associated with their synthesis. Herein, a strategy for the total synthesis of these alkaloids by using C? H activation chemistry is described. The tetracyclic skeleton was constructed in a stepwise manner by C(sp3)? H functionalization followed by a Catellani reaction, including C(sp2)? H functionalization. A one‐pot reaction involving both C(sp3)? H and C(sp2)? H functionalization was also attempted. This newly developed strategy is suitable for the facile preparation of various analogues because it uses simple starting materials and does not require protecting groups.  相似文献   

9.
A novel vinylogous Pictet–Spengler cyclization has been developed for the generation of indole‐annulated medium‐sized rings. The method enables the synthesis of tetrahydroazocinoindoles with a fully substituted carbon center, a prevalent structural motif in many biologically active alkaloids. The strategy has been applied to the total synthesis of (±)‐lundurine A.  相似文献   

10.
Strictamine and rhazinoline are representative methanoquinolizidine‐containing akuammiline alkaloids that possess different stereochemistry at the C16 position. A unified approach to the enantioselective total syntheses of these two molecules is described. The key steps in this synthesis include a photocatalytic intra/intermolecular type II radical cascade reaction, a Tsuji–Trost allylation, a palladium‐ or nickel‐mediated cyclization, and a late‐stage intramolecular N‐alkylation reaction.  相似文献   

11.
Bisquinolizidine alkaloids are characterized by a chiral bispidine core (3,7‐diazabicyclo[3.3.1]nonane) to which combinations of an α,N‐fused 2‐pyridone, an endo‐ or exo‐α,N‐annulated piperidin(on)e, and an exo‐allyl substituent are attached. We developed a modular “inside‐out” approach that permits access to most members of this class. Its applicability was proven in the asymmetric synthesis of 21 natural bisquinolizidine alkaloids, among them more than ten first enantioselective total syntheses. Key steps are the first successful preparation of both enantiomers of C2‐symmetric 2,6‐dioxobispidine by desymmetrization of a 2,4,6,8‐tetraoxo precursor, the construction of the α,N‐fused 2‐pyridone by using an enamine‐bromoacrylic acid strategy, and the installation of endo‐ or, optionally, exo‐annulated piperidin(on)es.  相似文献   

12.
A novel formal [2+2+2] strategy for the stereoselective elaboration of polycyclic indole alkaloids is described. Upon treatment with the catalyst InCl3 (5 mol %), tryptamine‐derived enamides reacted readily with methylene malonate, thus enabling rapid and gram‐scale access to versatile tetracyclic spiroindolines with excellent diastereoselectivity (21 examples, up to 95 % yield, up to d.r.>95:5). This strategy provides a concise approach to alkaloids isolated from Strychnos myrtoides, as demonstrated by a short synthesis of 11‐demethoxy‐16‐epi‐myrtoidine.  相似文献   

13.
A collective synthesis of glycosylated monoterpenoid indole alkaloids is reported. A highly diastereoselective Pictet–Spengler reaction with α‐cyanotryptamine and secologanin tetraacetate as substrates, followed by a reductive decyanation reaction, was developed for the synthesis of (?)‐strictosidine, which is an important intermediate in biosynthesis. This two‐step chemical method was established as an alternative to the biosynthetically employed strictosidine synthase. Furthermore, after carrying out chemical and computational studies, a transition state for induction of diastereoselectivity in our newly discovered Pictet–Spengler reaction is proposed. Having achieved the first enantioselective total synthesis of (?)‐strictosidine in just 10 steps, subsequent bioinspired transformations resulted in the concise total syntheses of (?)‐strictosamide, (?)‐neonaucleoside A, (?)‐cymoside, and (?)‐3α‐dihydrocadambine.  相似文献   

14.
The ophiobolin sesterterpenes are notable plant pathogens which have recently elicited significant chemical and biological attention because of their intriguing carbogenic frameworks, reactive functionalities, and emerging anticancer profiles. Reported herein is a total synthesis of (+)‐6‐epi‐ophiobolin A in 14 steps, a task which addresses construction of the synthetically challenging spirocyclic tetrahydrofuran motif as well as several other key stereochemical problems. This work demonstrates a streamlined synthetic platform to complex ophiobolins leveraging disparate termination modes of a radical polycyclization cascade for divergent elaboration and functionalization.  相似文献   

15.
2,3,3‐Trisubstituted indolenine constitutes an integral part of many biologically important monoterpene indole alkaloids. We report herein an unprecedented access to this skeleton by a TiCl3‐mediated reductive cyclization of tetrasubstituted alkenes bearing a 2‐nitrophenyl substituent. The proof of concept is demonstrated firstly by accomplishing a concise total synthesis of (+)‐1,2‐dehydroaspidospermidine featuring a late‐stage application of this key transformation. A sequence of reduction of nitroarene to nitrosoarene followed by 6π‐electron‐5‐atom electrocyclization and a 1,2‐alkyl shift of the resulting nitrone intermediate was proposed to account for the reaction outcome. A subsequent total synthesis of (+)‐condyfoline not only illustrates the generality of the reaction, but also provides a mechanistic insight into the nature of the 1,2‐alkyl shift. The exclusive formation of (+)‐condyfoline indicates that the 1,2‐alkyl migration follows a concerted Wagner–Meerwein pathway, rather than a stepwise retro‐Mannich/Mannich reaction sequence. Conditions for almost quantitative conversion of (+)‐condyfoline to (?)‐tubifoline by way of a retro‐Mannich/1,3‐prototropy/transannular cyclization cascade are also documented.  相似文献   

16.
The first total synthesis of the architecturally complex hetisine‐type heptacyclic C20‐diterpenoid alkaloids (±)‐spirasine IV and XI is reported. The A/F/G/C tetracyclic skeleton with the challenging N?C6 and C14?C20 linkages was efficiently constructed by an intramolecular azomethine‐ylide‐based 1,3‐dipolar cycloaddition with unusual regioselectivity. SmI2‐mediated free‐radical addition to the arene moiety without prior dearomatization and a stereoselective intramolecular aldol reaction further enabled rapid access to the hetisine core, providing a bicyclo[2.2.2]octane ring with a new oxygen substitution pattern.  相似文献   

17.
The synthesis of halogenated and trifluoromethylated α‐boryl ketones via a one‐pot oxidative difunctionalization of alkenyl MIDA boronates is reported. These novel densely functionalized organoborons bearing synthetically and functionally valuable carbonyl, halogen/CF3 and boronate moieties within the same molecule are synthetically challenging for the chemist, but have great synthetic potential, as demonstrated by their applications in a straightforward synthesis of borylated furans. The generality of this reaction was extensively investigated. This reaction is attractive since the starting materials, alkenyl MIDA boronates, are easily accessible.  相似文献   

18.
Polyheterocycles are found in many natural products and are useful moieties in functional materials and drug design. As part of a program towards the synthesis of Stemona alkaloids, a novel palladium(II)‐catalyzed C? H activation strategy for the construction of such systems has been developed. Starting from simple 1,3‐dienyl‐substituted heterocycles, a large range of polycyclic systems containing pyrrole, indole, furan and thiophene moieties can be synthesized in a single step.  相似文献   

19.
The asymmetric total synthesis of natural azasugars (+)‐castanospermine, (+)‐7‐deoxy‐6‐epi‐castanospermine, and synthetic (+)‐1‐epi‐castanospermine has been accomplished in nine to ten steps from a common chiral building block (S)‐ 8 . The method features a powerful chiral relay strategy consisting of a highly diastereoselective vinylogous Mukaiyama‐type reaction with either chiral or achiral aldehydes (≥95 % de; de=diastereomeric excess) and a diastereodivergent reduction of tetramic acids, which allows formation of three continuous stereogenic centers with high diastereoselectivities. The method also provides a flexible access to structural arrays of 5‐(α‐hydroxyalkyl)tetramic acids, such as 17/34 , and 5‐(α‐hydroxyalkyl)‐4‐hydroxyl‐2‐pyrrolidinones, such as 18 and 25/35 a . The method constitutes the first realization of the challenging chiral synthons A and D and thus of the conceptually attractive retrosynthetic analysis shown in Scheme 1 in a highly enantioselective manner.  相似文献   

20.
A highly enantioselective tandem Michael addition of tryptamine‐derived oxindoles to alkynones was developed by taking advantage of a chiral N,N′‐dioxide Sc(OTf)3 catalyst. The reaction enables the facile preparation of enantioenriched spiro[pyrrolidine‐3,3′‐oxindole] compounds, which provides a novel strategy for the synthesis of monoterpenoid indole alkaloids. As a demonstration, the asymmetric synthesis of strychnos alkaloids [(?)‐tubifoline, (?)‐tubifolidine, (?)‐dehydrotubifoline] was achieved in 10–11 steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号