首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL) and Raman spectroscopy.The results show that the europium ions are incorporated into the crystal lattice of ZnO matrix in trivalent ions.The nanoneedles are 2-3 μm in length and 100 nm in the tip diameter.PL and Raman measurements indicate that higher Eu^3+ doping concentration may destroy the crystallization of the nanoneedles and decrease the ratio of IUV/IDLE,which is mainly due to the more defects in the doped ZnO nanoneedles.And the characteristic red emissions of Eu^3+ ions are found by the PL spectroscopy with the Eu^3+doping concentration increasing,which are attributed to the ^5D0→^7F0,^5D0→^7F1 and ^5D0→^7F2 transitions.  相似文献   

2.
Europium ions were chemically bound to CdS nanoparticles surface by diethylenetri-aminepentaacetate (DTPA, 1) in a two-step synthetic route. First 1 was applied to chelate with cadmium on the surface of cadmium-rich CdS nanoparticles and act as a capping agent. Further, the purified 1-capped particles were used to bind with Eu~3 . The purified and redispersed particles were characterized by photoluminescence spectroscopy, TEM and SEM. It was observed that Eu~3 on the nanoparticle surface significantly increased the band gap emission and decreased the surface emission intensity of the CdS nanoparticles.  相似文献   

3.
The relationship between temperature and oxygen vacancy concentration is deduced in this paper. Based on the data of thermal weight-loss experiment, the formation enthalpies of congruent and several doped LN crystals have been calculated. It was found that the formation enthalpy of oxygen vacancies can be decreased evidently by doping valence-changeable ions. The experimental results were discussed and a new reduction process of the photorefractive LN crystal at a relatively low temperature was proposed, and the reduced crystals showed a good effect in practical use.  相似文献   

4.
The electronic density of states and band structures of doped and un-doped anatase TiO2 were studied by the Linearized Augmented Plane Wave method based on the density functional theory. The calculation shows that the band structures of TiO2 crystals doped with transition metal atoms become narrower. Interesting, an excursion towards high energy level with increasing atomic number in the same element period could be observed after doping with transition metal atoms.  相似文献   

5.
Transparent conductive boron-doped ZnO thin films were prepared by sol-gel spin coating method. The effect of doped boron concentration on the properties of the films was systematically discussed. The films were characterized by X-ray diffraction, atomic force microscopy, spectrophotometry, and Hall effect measurement system. All the doped and undoped ZnO films were of a single hexagonal structure, and showed a preferred orientation of (002). The particle size and surface roughness of the films decreased with increased doped boron concentration. All the films exhibited an average transmittance of approximate 90% in visible-light region and an energy gap of about 3.3 cV. The maximum carrier concentration, the highest carrier mobility and the lowest resistivity were observed at a doped boron concentration of 0.5%(molar fraction). Based on these results, we suggested that the saturation concentration of doped boron in ZnO film is 0.5%(molar fraction).  相似文献   

6.
In this paper,zinc acetate,manganese acetate and thiacetamide are used as raw materials to successfully synthesize monodispersed ZnS:Mn2+ microspheres by using hydrothermal method and taking P123 surfactant as a template. The products were characterized by XRD,STEM,FT-IR and N2 adsorption-desorption. And the results show that the diameter of this microsphere is 1.0 μm or so,which is larger than that of ZnS microsphere without Mn2+ doping,and it has monodispersion,smooth surface and uniform size. The doping of Mn2+ does not obviously change the structure of monodispersed ZnS microsphere. The photoluminescence peak lies in a wide band ranging from 450 to 650 nm,and the microspheres emit orange light; with the increase of Mn2+ concentration,fluorescence intensity of ZnS:Mn2+ microsphere changes,and when the mole ratio of Mn2+:Zn2+ is 0.3:1,the fluorescence intensity is the strongest.  相似文献   

7.
An ion-exchange resin of type 201×7 was impregnated with the reagent 1-(2-Pyridylazo)-2-naphthol-6-sulphonic Acid (PAN-S). The adsorption characteristics of PAN-S resin for manganese ion were studied on the static equilibrium adsorption. Within temperature range of 288K-313K and the concentration range investigated, equilibrium data for the adsorption of manganese ions from aqueous solutions by PAN-S resin were obtained and correlated with Freundlich and Langmuir equation. The results showed that the process of the adsorption of manganese ions from aqueous solution by PAN-S was an exothermic process. Estimations of the isothermic enthalpy change of adsorption, free energy change and entropy of adsorption are reported, and the adsorption behaviors are reasonably interpreted.  相似文献   

8.
The luminescence of Ce and Ce , Mn co-doped BaB8O13 and SrB4O7 prepared in air is studied. The results show that tetravalent cerium ion can be reduced to trivalent state in the hosts and gives rise to efficient luminescence. Energy transfer between Ce3 and Mn2 is possible. Mn2 ions can be efficiently sensitized by Ce 3 and exhibit green and red emissions which implied that Mn2 occupied the crystallographic sites of cations and boron sites of the anoins, respectively. The intensity ratio of red to green emission in matrix increases with the increasing of manganese concentration.  相似文献   

9.
NnO2:xEu3+(x=O, 1%, 3%, 5%, molar fraction) fibers were synthesized by electrospinning technology. The size of the as-prepared fibers is relatively uniform and the average diameter is about 200 nm with a large draw ratio. The as-prepared Eu3+ doped SnO2 nanofibers have a rutile structure and consist of crystallitc grains with an average size of about 10 nm. A slight red shift of the A1gand Bag vibration modes and an additional peak at 288 nm were observed in the Raman spectra of the nanofibers. The energies of bandgaps of the SnO2 nanofiber with Eu doping of 1% and 3% are 2.64 eV, and the energy of bandgap is 2.94 eV with Eu doping of 5%(molar fraction). There is only orange emission(5D0→7F1 magnetic dipole transition) for Eu doped SnO2 nanofibers, and no red emission could be observed. The orange emission upon indirect excitation splits into three peaks and the peak intensity at the excitation wavelength of 275 nm is higher than that at the excitation wavelength of 488 nm.  相似文献   

10.
In:Fe:Mn:LiNbO3(LN) crystals were grown in air atmosphere by Czochralski method with different concentration of In (0,1,2,3 mol%) in the melts,while the contents of Fe2O3 and MnO were 0.1 and 0.5 mol%,respectively. The location of doping ions was analyzed by Ultraviolet-visible absorption spectra and differential thermal analysis. The diffraction efficiency (η),writing time (τw) and erasure time (τe) of the crystals were measured by two-beam coupling experiment. The dynamic range and photorefractive sensitivity have also been calculated. The results showed that with the increase of In ions in the melt,the absorption edge of In:Fe:Mn:LN crystal shifts to the violet firstly and then makes the Einstein shift,the Curie temperature of crystal increases firstly and then decreases,the storage ratio speeds up,diffraction efficiency decreases,and dynamic range and photorefractive sensitivity increase. The mechanism of holographic storage properties of In:Fe: Mn:LN crystal with different doping concentration of In3+ was investigated,suggesting the In: Fe:Mn:LN crystals are excellent holographic storage materiel with better synthetical properties than Fe:Mn:LN crystals.  相似文献   

11.
分别采用NaBiO3和Bi(NO3)3为Bi源制备了Bi掺杂NaTaO3光催化剂,研究了Bi离子的价态对NaTaO3光催化分解水制氢性能的影响.采用X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)和紫外-可见吸收光谱研究了催化剂的晶体结构、Bi离子的化学状态和催化剂的光学吸收性能.以光催化分解水制氢反应研究了Bi离子掺杂NaTaO3的催化性能. XRD结果表明,对于两个不同Bi源掺杂的NaTaO3样品, Bi离子的掺杂没有改变催化剂的单斜相结构,但拉曼光谱证实Bi离子的掺杂致使Ta–O–Ta键角偏离了180o. XPS结果表明,以Bi(NO3)3为Bi源时, Bi离子以Bi3+掺杂于NaTaO3的A位;当以NaBiO3为原料时, Bi3+和Bi5+共掺杂于NaTaO3的A位.两种不同Bi源掺杂得到的样品在紫外-可见吸收光谱中给出了相似的光学吸收,但Bi3+的掺杂对NaTaO3光催化性能影响不大,而Bi3+和Bi5+共掺杂大大提高了NaTaO3的光解水制氢性能. Bi离子取代Na离子在A位的掺杂,在NaTaO3结构中引入了能够促进载流子分离的空位和缺陷;与此同时, Bi的掺杂导致Ta–O–Ta键角偏离180o而不利于载流子迁移.对于Bi3+掺杂的NaTaO3样品,这两种作用相互抵消,使得其催化性能与NaTaO3相比没有变化;而Bi3+和Bi5+的共掺杂和高价态Bi5+的掺杂引入了更多的空位和缺陷,提高了光生电子-空穴的分离效率,从而提高了光催化产氢性能.研究表明,光催化过程中载流子的迁移是影响催化性能的重要因素,而在ABO3钙钛矿结构的A位引入高价态离子是促进光生载流子分离的有效途径.  相似文献   

12.
采用高温固相法合成了可见光响应的Cu和W共掺杂NaTaO3光催化剂NaTaO3: Cu/W, 研究了Cu与W的摩尔比和共掺杂量(摩尔分数)对NaTaO3: Cu/W晶体结构、形貌、光吸收性质和可见光催化分解甲醇水溶液制氢活性的影响规律. 结果表明, Cu, W分别以Cu(Ⅱ)和W(Ⅵ)存在于\{NaTaO3: Cu/W中; Cu, W共掺杂不改变NaTaO3的晶体结构, 但能引起晶格畸变, 减小表面台阶间距; 当固定Cu与W的摩尔比, 增大共掺杂量时, 进入NaTaO3晶格的掺杂离子逐渐增多, 使(020)晶面的衍射峰逐渐向高角度方向移动, 光吸收边红移; 进一步增大共掺杂量, (020)晶面衍射峰则向低角度方向移动. 说明过量的掺杂离子不能有效进入晶格, Cu, W对NaTaO3的掺杂存在最大值; 当Cu与W的摩尔比为1: 2, 1: 3和1: 4时, 最大共掺杂量分别为8%, 6%和4%; NaTaO3: Cu/W在最大共掺杂量时光催化制氢活性明显提高. 其中, NaTaO3: Cu/W的光催化制氢活性在Cu与W的摩尔比为1: 4, 共掺杂量为4%时达到最佳值. 结果表明, Cu, W共掺杂NaTaO3可在一定程度上实现电荷平衡, 降低光生电子和空穴的复合几率, 从而提高光催化活性.  相似文献   

13.
利用硫代乙酰胺在水溶液中缓慢释放的S2-与Zn2+反应制备了ZnS纳米颗粒,ZnS纳米颗粒沉积吸附在3-磺酸基丙基三甲氧基硅烷自组装单层膜上。 实验发现,溶液中添加少量Mn2+,可以显著影响ZnS纳米颗粒的形貌,对ZnS纳米晶的生长方向也有重要影响。 EDS和XRD谱证实Mn2+并没有掺杂到纳米颗粒中去。 这为纳米粒子形貌的调控提供了新途径。 并对ZnS的形成过程进行了探讨,并提出了可能的影响纳米材料形貌的机制。  相似文献   

14.
粟智  刘丛  徐茂文 《应用化学》2010,27(2):220-226
以Na2CO3 、(CH3CO2)2Mn•4H2O、Y2O3和CH3COOLi•2H2O为原料,采用高温固相法经过2次灼烧和水热离子交换法得到一系列钇掺杂的LiMn1-xYxO2 (x=0.01,0.02,0.03,0.05) 化合物。通过XRD、XPS、循环伏安及恒电流充放电测试,研究了钇掺杂离子对合成正极材料结构及电化学性能的影响。X射线衍射测试结果表明,所得产物均具有单斜层状结构。循环伏安及恒电流充放电测试结果表明,合适的钇掺杂可以起到扩展锂离子脱嵌通道和稳定骨架结构的作用, 钇离子的引入可以部分取代原有的三价锰离子, 由于钇离子的离子半径较三价锰离子大, 因此稀土掺杂锰酸锂材料的晶胞参数比未掺杂材料大, 在一定程度上扩充了锂离子迁移的三维通道, 更有利于锂离子的嵌入与脱嵌,提高单斜层状LiMnO2 材料的电化学循环可逆性及循环稳定性。通过对所得化合物进行了钇掺杂量及电化学性能的研究,得到性能比较优良的LiY0.021Mn0.979O2化合物,其首次放电比容量为125.7 mA·h/g,100次循环以后,放电比容量达212.1 mA·h/g,远高于未掺杂材料的放电容量138 mA·h/g。交流阻抗测试结果表明, Y3+的掺入能降低材料的电化学反应阻抗和提高材料中Li+的扩散能力。  相似文献   

15.
锰掺入对CeO2催化氧化CO性能的影响   总被引:17,自引:0,他引:17  
张继军  刘英骏 《分子催化》1999,13(3):219-222
氧化铈具有萤石矿型结构,并且随着氧化还原气氛的不同,铈可以Ce4+/Ce3+价态存在,在结构中易于形成流动性的氧空位,这些性质使得它成为很好的催化氧化活性材料;CeO2经贱金属掺杂之后,可进一步提高其催化氧化活性,近年来倍受人们的重视[1,2].锰的...  相似文献   

16.
采用光致发光光谱技术对一系列不同条件下制备的NaTaO3及不同掺杂量的NaTaO3∶Bi3+进行了研究. 结果表明, NaTaO3的发光性质与其制备条件密切相关: 在钠离子不足的条件下合成的样品, 其发光带主要位于515和745 nm左右; 而在钠离子充足条件下合成的样品, 其发光带位于460 nm左右, 随着n(Na)/n(Ta)的降低, 发光带向长波长方向移动; 掺入Bi3+之后, 其发光峰由515 nm移至455 nm, 随着Bi3+掺入量的增加, 455 nm的发光带强度减弱. 515 nm的发光带与替位缺陷TaNa....相关; 745 nm的发光带与VNa`缺陷相关; 而460 nm的发光带与本征TaO6基团相关. 将Bi3+掺入到钽酸钠样品, TaNa....由BiNa..替代, 相应的发光带向高的n(Na)/n(Ta)方向移动, 从而呈现出本征TaO6基团的发光带.  相似文献   

17.
NiO-loaded NaTaO(3) doped with lanthanum showed a high photocatalytic activity for water splitting into H(2) and O(2) in a stoichiometric amount under UV irradiation. The photocatalytic activity of NiO-loaded NaTaO(3) doped with lanthanum was 9 times higher than that of nondoped NiO-loaded NaTaO(3). The maximum apparent quantum yield of the NiO/NaTaO(3):La photocatalyst was 56% at 270 nm. The factors affecting the highly efficient photocatalytic water splitting were examined by using various characterization techniques. Electron microscope observations revealed that the particle sizes of NaTaO(3):La crystals (0.1-0.7 microm) were smaller than that of the nondoped NaTaO(3) crystal (2-3 microm) and that the ordered surface nanostructure with many characteristic steps was created by the lanthanum doping. The small particle size with a high crystallinity was advantageous to an increase in the probability of the reaction of photogenerated electrons and holes with water molecules toward the recombination. Transmission electron microscope observations and extended X-ray absorption fine structure analyses indicated that NiO cocatalysts were loaded on the edge of the nanostep structure of NaTaO(3):La photocatalysts as ultrafine particles. The H(2) evolution proceeded on the ultrafine NiO particles loaded on the edge while the O(2) evolution occurred at the groove of the nanostep structure. Thus, the reaction sites for H(2) evolution were separated from those of O(2) evolution over the ordered nanostep structure. The small particle size and the ordered surface nanostep structure of the NiO/NaTaO(3):La photocatalyst powder contributed to the highly efficient water splitting into H(2) and O(2).  相似文献   

18.
Mo掺杂对纳米TiO2结构和活性的影响   总被引:5,自引:0,他引:5  
利用Mo6 的掺杂在TiO2中引入缺陷,从而扩大TiO2催化剂的光谱响应范围。运用UV-Vis、XRD、XPS、TG-DTA等测试技术考察了钼离子掺杂浓度对于TiO2光催化剂吸收光谱范围、晶型、晶胞和晶粒的影响,分析了钼进入TiO2品格的方式、价态和掺杂催化剂在热处理过程中发生的物理和化学变化。以亚甲蓝溶液的光催化降解为模型反应,考察了掺杂量对这种新型光催化剂的光催化活性的影响。结果表明,Mo6 可进入TiO2晶格中形成杂质缺陷,引起TiO2品格膨胀,Mo6 的掺杂量影响TiO2晶粒尺寸和晶相转化。Mo6 掺杂的质量分数为4.5%时,样品的吸收带边可达460 nm,对40 mg/L亚甲蓝反应2 h的降解率为58.3%,矿化率为52.5%。而Mo6 的掺杂质量分数为3.0%和6.0%时,形成的TiO2晶粒尺寸较小,TiO2晶粒中锐钛矿相与金红石相的比例接近4:1时,对亚甲蓝降解率分别为56.6%和52.0%,矿化率分别为49.2%和44.2%。  相似文献   

19.
This paper reports on the spectral properties of Mn2+, Co2+ and Ni2+ ions doped B2O3-ZnO-PbO glasses. XRD, FT-IR spectra and DSC profiles of these glasses have also been carried out, and the FT-IR profiles have shown the presence of both BO3 and BO4 units. It is interesting to notice that the FT-IR peak positions are slightly shifted towards higher energy with an increase in transition metal ion concentration change. From the measured DSC thermograms, glass transition (T(g)), crystallization (T(c)) and temperature of melting (T(m)) have been evaluated. From the UV absorption spectra of Mn2+, Co2+ and Ni2+ ions doped glasses, both direct and indirect optical band gaps have been calculated. The visible absorption spectra of Mn2+:glasses have shown a broad absorption band at 520 nm (6A1g(S) --> 4T1g(G)); with Co2+ ions one absorption band at 605 nm (4A2(4F) --> 4T1(4P)) and another at 1450 nm (4A2(4F) --> 4T1(4F)); and for Ni2+:glasses three absorption bands at 420 nm (3A2g(F) --> 3T1g(P)), 805 nm (3A2g(F) --> 1Eg(D)) and 880 nm (3A2g(F) --> 3T1g(F)) have been observed. For Mn2+:glasses, upon excitation with 262 nm, a green emission (539 nm) with a slight blue shift; and with 392 nm, a green emission (534 nm) with a slight red shift with Mn2+ ions concentration change (0.2-0.5 mol%) has been observed. This green emission has been assigned to (4T1(G) --> 6A1(S)) d-d transition of Mn2+ ions that are in tetrahedral co-ordination. For 0.5 mol% Co2+ ions doped glass, upon excitation with 580 nm, a red emission (625 nm) has been observed which originates from 2E(2G) --> 4A2(4F) transition of Co2+ ions in tetrahedral co-ordination. For Ni2+ ions doped glasses upon excitation with 420 nm, a green (577 nm) and red (670 nm) emissions are observed and are assigned to (1T2g(D) --> 3A2g(F)) and (1T2g(D) --> 3T2g(F)) d-d transitions of Ni2+ ions in octahedral co-ordination.  相似文献   

20.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号