首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Tin sulfide nanoparticles(SnS -NPs) were prepared in aqueous solution at room temperature on the surface of activated carbon(AC) and were investigated using field-emission scanning electron mi-croscopy(FE-SEM), transmission electron microscopy(TEM), X-ray diffraction, reflective ultravio-let-visible spectrophotometry, and spectrofluorimetry. Calculations based on the SEM and TEM images showed that the sizes of the SnS -NPs immobilized on the AC were 30–70 nm. The prepared nanocomposite was used as a heterogeneous Lewis acid catalyst for the three-components one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives in ethanol at 80 ℃. The reactions were efficiently performed in the presence of the prepared catalyst in short reaction times, and gave the desired products in high yields. This catalyst can be easily recovered by simple filtration and recycled up to eight consecutive times without significant loss of its efficiency.  相似文献   

2.
Pyrite nickel disulfide and millerite nickel monosulfide have been successfully prepared by solvothermal method based on the reaction of Ni(NO3)26H2O and H2NC(S)NH2 in benzene and ethylenediamine (EDA). The final products were characterized by X-ray powder diffraction(XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). The effects of the solvent, reaction temperature and time on the morphology and phase of the products have been discussed.  相似文献   

3.
The electrooxidation of ethylene glycol(EG) on the surface of gold nanoparticles(AuNPs) in alkaline medium was investigated.AuNPs were electrodeposited on pencil graphite(PG) by fast scan cyclic voltammetry.Different sizes of AuNPs deposited on the surface of PG(AuNPs/PG) were used for the electrooxidation process.AuNPs were electrodeposited on PG at various deposition times in the same potential range but with different scan rates and scan cycles.Scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD) were used to visualize and characterize the prepared AuNPs/PG electrodes.Cyclic voltammograms were also used to investigate the electrooxidation of EG.The effects of EG and supporting electrolyte concentrations,scan rate,particle size of AuNPs and final potential limit on the electrooxidation process have been investigated.Further studies showed that the electrooxidation of EG is affected by temperature of the medium.The prepared AuNPs showed stability after long-term use.  相似文献   

4.
多枝状γ -MnOOH的低温水热合成与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
γ-MnOOH multipods were synthesized by a low temperature hydrothermal method. The synthetic procedure is based on the use of PEG200 to reduce KMnO4 upon controlling the volume of PEG200. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were used to characterize the products. All pods of them are single crystals, the diameter of each pod is about 40~120 nm and the length is about 800~2 400 nm. A possible formation mechanism was proposed that the intermediate products with a lamellar morphology curled into γ-MnOOH nanorods during the reaction process at first, and then γ-MnOOH multipods formed for the multi-nuclei growth on the tips of the γ-MnOOH nanorods when they were good crystallization.  相似文献   

5.
杜记民  陈志强  郭玮 《结构化学》2010,29(1):126-133
Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal method at 180 ℃ for 12 h.The crystalline phase and morphology of the resultant nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),selected-area electronic diffraction(SAED) and high-resolution electron microscopy(HRTEM).Interestingly,the sizes and prod length of the samples can be easily tuned by changing the amount of directing agent EG and keeping other reaction conditions unchangeable.On the basis of our experimental outcomes,EG-controlled-nucleation-growth formation mechanism was proposed to correspond for the sea-urchin-like ZnO growth processes.And the photoluminescence(PL) spectra of the as-selected samples were measured at room temperature,presenting two emission peaks centered at~388 and 480 nm.  相似文献   

6.
The effect of Co particle size on the Fischer-Tropsch synthesis (FTS) activity of carbon nanotube (CNT)-supported Co catalysts was investigated. Microemulsion (using water-to-surfactant molar ratios of 2 to12) and impregnation techniques were used to prepare catalysts with different Co particle sizes. Kinetic studies were performed to understand the effect of Co particle size on catalytic activity. Size-dependent kinetic parameters were developed using a thermodynamic method, to evaluate the structural sensitivity of the CNT-supported Co catalysts. The size-independent FTS reaction rate constant and size-independent adsorption parameter increased with increasing reac-tion temperature. The Polani parameter also depended on catalyst particle size, because of changes in the catalyst surface coverage.  相似文献   

7.
Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emulsion polymerization was studied at varying concentrations of the initiator, monomer, complex and solvent over a temperature range of 30-70℃. The overall activation energy (Ea, 49.79 kJ/mol), energy of dissociation of initiator (Ed,82.68 kJ/mol), number of micelles (0.163×1018) and the viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil-in-water polymerization was stabilized by the presence of the CoCl2/EDTA in situ complex reducing the particle size into the nano order. The average diameters of PAN nano particles, obtained by TEM, were in the range of 50-150 nm at the maximum conversion. The experimental particle size was mainly dependent on the concentration of the complex and temperature.  相似文献   

8.
Highly oriented cubic, hollow cubic and spherical nanoparticles of cobalt-iron Prussian blue analogues were synthesized in poly oxyethylene tertoctylphenyl ether (TritonX-100)/n-hexanol/cyclohexane microemulsion. The effects of the water-to-surfactant molar ratio (w), the reactant concentration and the reaction temperature on the morphology of cobalt-iron Prussian blue analogues were studied. The samples were characterized by transmission electron microscopy (TEM), field emission scan electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and infrared spectroscopy (IR).  相似文献   

9.
Nanosized colloidal platinum was prepared by reduction of H2PtCl6 in methanol-water mixture by refluxing. The particle size and morphology were characterized by transmission electron microscopy and electron diffraction. The influence of polyvinylpyrrolidone (PVP) molecular mass (MM),PVP concentration,and reduction time on platinum particle size was investigated. Small (1-2 nm) Pt particles are formed in the case of PVP with MM=1.2×104. With increasing polymer MM and decreasing polymer concentration,large aggregates from small particles appear. High catalytic activity of the obtained colloidal platinum in hydrogenation of acetylene compounds is shown. The effect of Pt particle size on the catalytic activity was studied.  相似文献   

10.
Effects of reaction temperature and methane gas hourly space velocity (GHSV) on methane decomposition over non-supported Ni catalyst have been investigated in this work.Methane molecules activation,Ni particles growth and nano-carbon diffusion were the main factors influencing methane decomposition stability of non-supported Ni.The results of methane decomposition activity test on the non-supported Ni catalyst showed that the prepared non-supported Ni could exhibit a good methane decomposition performance with 273 gC/gNi and 2667 molH2/molNi at 500 -C and 45000 mL/(gcat h).Scanning electron microscope (SEM),X-ray powder diffraction (XRD) and temperature-programmed oxi- dation (TPO) have been carried out to characterize the used catalysts.The deposited carbon was carbon nanofibers,among which graphitic carbon formation increased with the reaction time of methane decomposition.Ni particle size was not the decisive factor during the carbon growing stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号