首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecular modeling investigation of dilation effects induced by sorbed gas molecules in two glassy polymers is presented. As experimental reference, integral sorption of CO2 and CH4 was measured for polysulfone (PSU) and a polyimide (6FDA‐TrMPD, PI4) at 308 K and a pressure of 10 bar. Simultaneously, the gas induced swelling effect was measured with a dilatometer based on a capacitive distance sensor recorded. The experimental evidence of the (on the observed time scale and concentration levels) elastic nature of the gas induced dilation is supported by the dilation and contraction behavior observed in molecular dynamics (MD) simulations of respective detailed atomistic packing models. These models were constructed in accordance with gas concentration levels obtained from the experimental sorption results. Quantitative deviations between simulated and measured dilations are discussed as a consequence of an anelastic response of the polymer matrix which is too fast to be resolved in the experiments whose kinetics is dominated by diffusional processes. In the simulation, the initial insertion of penetrant molecules into equilibrated packing models “circumvents” the slow diffusional process of the experiment and allows a reasonable representation of the dilation process as well as a closer investigation. Our simulation approach reveals a different behavior for PSU and PI4 on the corresponding time scale. Most likely, the different chain mobility of the two polymers is responsible for the respective response to the inserted amount of gas molecules which is discussed in terms of the different chain mobilities of the two polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 59–71, 2008  相似文献   

2.
The equilibrium sorption and swelling behavior of four different polymers—poly(methyl methacrylate), poly(tetrafluoroethylene), poly(vinylidene fluoride), and the random copolymer tetrafluoroethylene–perfluoromethylvinylether–in supercritical CO2—are studied at different temperatures (from 40 to 80 °C) and pressures (up to 200 bar). Swelling is measured by visualization, and sorption through a gravimetric technique. From these data, the behavior of amorphous and semicrystalline polymers can be compared, particularly in terms of partial molar volume of CO2 in the polymer matrix. Both poly(methyl methacrylate) and the copolymer of tetrafluoroethylene exhibit a behavior typical of rubbery systems. On the contrary, polymers with a considerable degree of crystallinity, such as poly(tetrafluoroethylene) and poly (vinylidene fluoride), show larger values of partial molar volume. These can be related to the limited mobility of the polymer chains in a semicrystalline matrix, which causes the structure to “freeze” during the sorption process into a nonequilibrium state that can differ significantly from the actual thermodynamic equilibrium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1531–1546, 2006  相似文献   

3.
This article demonstrates that transport of gases through glassy polymers is significantly influenced not only by the absolute amount but also by the distribution of free volume. Two stereoisomers of polynorbornene with nearly equivalent total free volume, but markedly different average free‐volume sizes, were evaluated. The free‐volume element size was probed with positron annihilation lifetime spectroscopy, wide‐angle X‐ray scattering, gas sorption, and molecular modeling. The permeation, sorption, and diffusion of light gases were measured in each stereoisomer at 35 °C. All analytical techniques indicated that one isomer (labeled as Architecture II) had a larger average free‐volume element size but fewer elements. This isomer also had a very slightly higher bulk density (1.000 vs 0.992 g/cm3 for the other stereoisomer). Architecture II also had gas sorption and diffusion coefficients that were two to three times those of the less dense counterpart. These differences have been attributed to differences in the free‐volume element size available within the polymer matrix. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2185–2199, 2003  相似文献   

4.
The development of a new model for the diffusion of gas molecules in glassy polymers is presented which utilizes concepts from free volume theory and relies on a dual-mode interpretation of sorptive dilation in glassy polymers. Three assumptions are made in the development of the model. First, the free volume available for molecular transport processes is taken as constant below the glass transition temperature. Second, two populations of gas molecules are assumed to exist—one which contributes to the maintenance of an iso-free volume state upon sorptive dilation and one which does not contribute owing to sorption into regions of unrelaxed volume. Third, the former population is assumed to be mobile while the latter is not. The resulting model predicts, at constant temperature, a diffusion coefficient that is independent of solute volume fraction. This is in contrast to the widely used dual-mode sorption model with partial immobilization for gas transport in glassy polymers which leads to a diffusion coefficient that is dependent on solute mole fraction through the molar gas concentration. The new model is used to interpret gas transport data from permeation experiments for carbon dioxide, methane, and ethylene in three polycarbonates. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1737–1746, 1997  相似文献   

5.
Hydrogels with various ionic group contents were prepared from acrylamide and crotonic acid (CrA) monomers with 0–12.9 mol % CrA in aqueous solutions by radiation‐induced polymerization and gelation with γ rays from a 60Co source. The volume swelling ratio of the poly(acrylamide/crotonic acid) hydrogels was investigated as a function of the pH and ionic strength of the swelling medium and the type of counterion in the swelling medium. The volume swelling ratio increased with an increase in pH and a decrease in the ionic strength. The volume swelling ratio of these hydrogels was evaluated with an equation, based on the Flory–Huggins thermodynamic theory, the James–Guth phantom network theory, and the Donnan theory of swelling of weakly charged ionic gels, that was modified here for the determination of the molecular weight between crosslinks (Mc) and the polymer–solvent interaction parameter (χ). The modified equation described very well the swelling behavior of the charged polymeric network. The same equation also provided the simultaneous measurement of these parameters for the systems investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1656–1664, 2003  相似文献   

6.
The gas concentration and pressure effects on the shear viscosity of molten polymers were modeled by using a unified approach based on a free volume theory. A concentration and pressure dependent “shift factor,” which accounts for free volume changes associated with polymer‐gas mixing and with variation of absolute pressure as well as for dilution effects, has been herein used to scale the pure polymer viscosity, as evaluated at the same temperature and atmospheric pressure. The expression of the free volume of the polymer/gas mixture was obtained by using the Simha and Somcynsky equation of state for multicomponent fluids. Experimental shear viscosity data, obtained for poly(ε‐caprolactone) with nitrogen and carbon dioxide were successfully predicted by using this approach. Good agreement with predictions was also found in the case of viscosity data reported in the literature for polystyrene and poly(dimethylsiloxane) with carbon dioxide. Free volume arguments have also been used to predict the Tg depression for polystyrene/carbon dioxide and for poly(methyl methacrylate)/carbon dioxide mixtures, based on calculations performed, again, with the Simha and Somcynsky theory. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1863–1873, 2006  相似文献   

7.
Non‐Fickian sorption kinetics of methanol vapor in a poly(methyl methacrylate) film of 8 μm, at 35 °C, are presented. The behavior of the system was studied in series of interval absorption runs. The relevant diffusion and viscous relaxation processes were studied by kinetic analysis of the sorption kinetic curves, using the relaxation‐dependent solubility model. The sorption isotherm concaves upward at high activities, typical to Florry–Huggins behavior, while it exhibits a convex‐upward curvature at low methanol vapor activities, indicating sorption in the excess free volume of the polymer matrix. Thermodynamic diffusivity presents a complex functional dependence on the concentration, while relaxation rate is found to be a function of concentration as well as of concentration interval. Relaxation rate becomes increasingly concentration‐dependent as the effective glass transition of the system is approached. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3173–3184, 2006  相似文献   

8.
This article describes the solubility of carbon dioxide, ethylene and propane in 1‐octene based polyethylene of 0.94, 0.92, 0.904, and 0.87 densities. The isotherms obtained in the gas sorption experimental device display a sorption behavior similar to that of glassy polymers. We apply the dual model to semicrystalline polymers assuming that Henry's sites are related to the amorphous phase, which decreases when the crystallinity percentage increases, whereas the surface of the crystalline phase acts as a Langmuir site with higher gas‐polymer affinity than glassy polymers. The good concordance of the calculated kD values, using the Flory‐Huggins theory of polymer diluent mixtures, with the experimental results suggest that Henry's gas sorption fulfills this theory and, therefore, it may be a suitable way to estimate polymer‐gas enthalpic interactions. Particularly, the variation of kD with the crystallinity fraction is exponential and the proportionality of the total sorption with the amorphous content seems only apparent. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1798–1807, 2007  相似文献   

9.
New experimental results for the solubility of nitrogen and carbon dioxide in polystyrene are reported, accompanied by data on the change in volume of the polymer caused by the sorption process. The two phenomena were measured simultaneously with a combined technique, in which the quantity of penetrating fluid introduced into the system was evaluated by pressure‐decay measurements in a calibrated volume, whereas a vibrating‐wire force sensor was employed for weighing the polymer sample during sorption inside of the high‐pressure equilibrium cell. The use of the two techniques was necessary because the effects of swelling and solubility could not be decoupled in a single gravimetric or pressure‐decay measurement. The sorption of nitrogen in polystyrene was studied along three isotherms from 313 to 353 K at pressures up to 70 MPa. The sorption of carbon dioxide was measured along four isotherms from 338 to 402 K up to 45 MPa. The results are compared with values from the literature when possible, although our data extend significantly the pressure ranges of the latter. The uncertainties affecting our measurements with nitrogen are 1 mg of N2/g of polystyrene in solubility and 0.1% of the volume of the polymer. For carbon dioxide, the uncertainties are 5 mg of N2/g of polystyrene and 0.5% respectively, carbon dioxide being about 1 order of magnitude more soluble than nitrogen. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2063–2070, 2001  相似文献   

10.
A model of continuous‐site distribution for gas sorption in glassy polymers is examined with sorption data of CO2 and Ar in polycarbonate. A procedure is presented for determining from a measured isotherm the number of sorption sites in a polymer, an important parameter that previously had to be assumed. With this parameter value and solubility data obtained at zero pressure, the model can reasonably predict sorption isotherms of CO2 in glassy polycarbonate for a wide temperature range. The number of sorption sites and the average site volume evaluated from CO2 sorption isotherms are employed for the prediction of Ar sorption isotherms with zero‐pressure solubility data and the independently measured partial molar volume of Ar. A reasonable fit to the measured isotherms of Ar is achieved. With the proposed procedure, the continuous‐site model shows several advantages over the conventional dual‐mode sorption model. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 883–888, 2000  相似文献   

11.
Aromatic polyamides based on poly(m‐xylylene adipamide) (MXD‐based polyamides) and poly(hexamethylene isophthalamide) (HMD‐based polyamides) were examined. Insight into the excellent gas‐barrier properties was obtained by the characterization of the effect of water sorption on the thermal transitions, density, refractive index, free‐volume hole size, and oxygen‐transport properties. Reversing the carbonyl position with respect to the amide nitrogen substantially lowered the oxygen permeability of MXD‐based polyamides in comparison with that of HMD‐based polyamides by facilitating hydrogen‐bond formation. The resulting restriction of conformational changes and segmental motions reduced diffusivity. The primary effect of water sorption was a decrease in the glass‐transition temperature (Tg) attributed to plasticization by bound water. No evidence was found to support the idea that sorbed water filled holes of free volume. When the polymer was in the glassy state, the drop in Tg accounted for hydration‐dependent changes in the density, refractive index, and free‐volume hole size. The correlation of the oxygen solubility with Tg and density confirmed the concept of oxygen sorption as filling holes of excess free volume. In some cases, water sorption produced a glass‐to‐rubber transition. The onset of rubbery behavior was associated with a minimum in the oxygen permeability. The glass‐to‐rubber transition also facilitated the crystallization of MXD‐based polymers, which complicated the interpretation of oxygen‐transport behavior at higher relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1365–1381, 2005  相似文献   

12.
Mutual diffusion coefficients and sorption isotherms of methyl methacrylate (MMA) and butyl acrylate (BA) monomers in methyl methacrylate‐butyl acrylate copolymer (MMA‐BA) have been measured by gravimetric sorption. MMA is found to have higher solubility and diffusion rates in the copolymer than BA. Sorption data for MMA were interpreted using classical Flory‐Huggins thermodynamic theory with a constant interaction parameter (χ). A modified version of this theory has been applied to correlate the sorption data of BA, which exhibit a temperature and concentration‐dependent χ parameter. For MMA, the isotherm data reveal enhanced polymer‐solvent interactions with increasing temperature, while for BA the data indicate a drive toward phase separation with increasing temperature. Despite the difference in thermodynamic behavior, both monomers are found to exhibit Fickian diffusion and the diffusivity data are correlated reasonably well with the Vrentas‐Duda free volume theory. Some deviation between the free‐volume correlation and the experimental data is observed at the lowest temperature and BA concentration examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1996–2006, 2007  相似文献   

13.
A highly crosslinked hyperbranched polymer that rapidly swells and shrinks in a halogenated solvent in response to the addition of an acid or base has been prepared by Cu(I) catalysis of the reaction between a diazide and an amine‐containing trialkyne. The triazole linkages in the polymer are highly stable and may also play a role in the swelling behavior. The swelling–deswelling process is reversible. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5513–5518, 2006  相似文献   

14.
The thickness‐dependent water vapor swelling of molecular layer‐by‐layer polyamide films is studied via specular X‐ray reflectivity. The maximum swelling ratio of these ultrathin films scale inversely with thickness but more importantly show a dual‐mode sorption behavior characterized by Langmuir‐like sorption at low relative humidity and network swelling at high relative humidity. The thickness‐dependent network parameters are extracted using a proposed model that builds on Painter‐Shenoy network swelling model while taking into account the glass‐like characteristic below a critical swelling ratio, which also scales inversely with thickness. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 412–417  相似文献   

15.
The sorption of carbon dioxide in poly(lactic acid) (PLA) was studied by quartz crystal microbalance at high pressures. To address the effect of the D isomer present in the polymer on the gas sorption, measurements were performed in PLA with two different L:D contents, 80:20 and 98:2. New data for the solubility of carbon dioxide in PLA 80:20 and PLA 98:2 over a temperature range from 303.2 to 323.2 K and up to 5 MPa are presented. The results obtained were correlated with the dual‐mode sorption model and the Flory‐Huggins equation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1010–1019, 2006  相似文献   

16.
We have used an optical interference technique to measure the dilation of polystyrene films in the presence of carbon dioxide or helium at pressures up to 20 atm. Dilation isotherms (plots of dilation versus gas pressure at constant temperature) were obtained for three samples of polystyrene which had widely differing molecular weights. The dilation isotherms have the same general shape as sorption isotherms, which means that all of the sorbed gas molecules contribute to volume dilation and non can be thought of as occupying molecular-sized voids in the polymer. Using sorption results from the literature we show that the partial molar volume of CO2 at 35°C is about 39 cm3 mol?1 and appears to be independent of polystyrene molecular weight. For a polystyrene sample with Mn = 3600, the partial molar volume of sorbed CO2 increases to 44 and 50 cm3 mol?1 at 45 and 55°C, respectively. The sorption of CO2 in polystyrene is shown to depress the glass transition temperature of the mixture, consistent with theoretical predictions. The shape of the dilation and sorption isotherms are consistent with the depression of the glass transition temperature.  相似文献   

17.
Experimental data on gas sorption and polymer swelling in glassy polymer—gas systems at elevated pressures are presented for CO2 with polycarbonate, poly(methyl methacrylate), and polystyrene over a range of temperatures from 33 to 65°C and pressures up to 100 atm. The swelling and sorption behavior were found to depend on the occurrence of a glass transition for the polymer induced by the sorption of CO2. Two distinct types of swelling and sorption isotherms were measured. One isotherm is characterized by swelling and sorption that reach limiting values at elevated pressures. The other isotherm is characterized by swelling and sorption that continue to increase with pressure and a pressure effect on swelling that is somewhat greater than the effect of pressure on sorption. Glass transition pressures estimated from the experimental results for polystyrene with CO2 are used to obtain the relationship between CO2 solubility and the glass transition temperature for the polymer. This relationship is in very good agreement with a theoretical corresponding-states correlation for glass transition temperatures of polystyrene-liquid diluent mixtures.  相似文献   

18.
Some microporous poly(vinylidene fluoride) (PVdF) separators for lithium‐ion batteries, used in liquid organic electrolytes based on a mixture of carbonate solvents and lithium salt LiPF6, were characterized by the study of the swelling phenomena on dense PVdF membranes. Various aspects of the kinetics of the carbonate solvents and the solvent mixture sorption in dense PVdF slabs were studied at different temperatures. Non‐Fickian behavior, characterized by S‐shaped sorption curves, was highlighted, and a salt effect, which resulted in two‐stage sorption, was studied. Diffusion coefficients and activation energies were calculated for the Fickian portions of the sorption curves, that is, at short times and low swelling ratios. A strong influence of the different interaction parameters was shown for the swelling kinetics. This study proved that the swelling of microporous PVdF membranes could be considered instantaneous. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 544–552, 2004  相似文献   

19.
Theories based on free‐volume concepts have been developed to characterize the self and mutual‐diffusion coefficients of low molecular weight penetrants in rubbery and glassy polymer‐solvent systems. These theories are applicable over wide ranges of temperature and concentration. The capability of free‐volume theory to describe solvent diffusion in glassy polymers is reviewed in this article. Two alternative free‐volume based approaches used to evaluate solvent self‐diffusion coefficients in glassy polymer‐solvent systems are compared in terms of their differences and applicability. The models can correlate/predict temperature and concentration dependencies of the solvent diffusion coefficient. With the appropriate accompanying thermodynamic factors they can be used to model concentration profiles in mutual diffusion processes that are Fickian such as drying of coatings. The free‐volume methodology has been found to be consistent with molecular dynamics simulations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
The swelling of dextran gels (Sephadex) in salt solutions with a water activity of 0.937, compared with the swelling in pure water, exhibited anion specificity as evidenced by an increased swelling ratio in the following order: Na2SO4 < H2O < NaCl < NaSCN. The swelling ratio showed a good linear correlation with the osmotic pressure of dextran (500 kD) in these solutions. The salt‐concentration difference (imbalance) between the polymer‐solution side of the membrane and the polymer‐free permeate side during the osmotic‐pressure measurements positively correlated with the effect of the salt on the polymer osmotic pressure. These phenomena conform to Hofmeister‐type (or lyotropic) behavior. The diminishing augmentation of dextran osmotic pressure and the change in the salt‐concentration imbalance with rising NaSCN concentration imply a positive preferential interaction and adsorption of the salt onto the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2740–2750, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号