首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
高比表面NiP非晶态合金的制备及其催化性能   总被引:7,自引:0,他引:7  
 以次磷酸和硝酸镍为原料,三正丙胺调节溶液的pH值,制备了具有高比表面积的NiP非晶态合金(ABET=200~300 m2/g). 采用ICP,XRD,TEM和N2物理吸附等方法对不同条件下制备的NiP非晶态合金进行了表征,并在250 ml高压反应釜中评价了NiP对环丁烯砜加氢反应的催化活性. 结果表明,在NiP非晶态合金的制备过程中,反应时间、磷/镍投料摩尔比和体系初始pH值等都会对NiP非晶态合金的物化性质产生影响. 制备温度对NiP非晶态合金的物化性质影响很大,温度高会使催化剂的氧化程度加深,催化活性随之迅速下降. 较适宜的NiP非晶态合金的制备温度为283~303 K,此温度范围内制得的NiP催化剂活性可达到90%以上,高于相同条件下使用次磷酸钠、镍盐和氢氧化钠制得的NiP非晶态合金催化剂(活性为50%~60%).  相似文献   

2.
以次磷酸镍为原料制备NiP和NiPB非晶态合金的新方法   总被引:6,自引:0,他引:6  
以次磷酸镍为原料用化学还原法制备出了NiP和NiPB非晶态合金.用ICP、XRD和TEM等方法对催化剂物性进行了表征.研究了制备条件,如原料浓度、温度、pH值及引发剂的加入对制备NiP非晶态合金的影响.在300 K下所制备的NiP非晶态合金平均粒径约为30 nm.研究了原料浓度与原料配比对NiPB非晶态合金物性的影响,可通过改变原料浓度和配比得到所需组成的NiPB非晶态合金. NiPB非晶合金平均粒径约为15 nm.  相似文献   

3.
分别采用化学还原法和浸渍还原法制备了系列NiB及NiB/TiO2非晶态合金催化剂,用XRD、ICP、SEM、SAED和DSC等技术对催化剂的物性进行了表征,并将其用于环丁烯砜加氢反应,研究了制备条件(镍硼摩尔比、滴加方式和金属离子浓度)对非晶态合金催化剂加氢活性的影响。结果表明,选择镍硼摩尔比为1:2,Ni^2 浓度为0.1mol/L,采用正滴加方式(将KBH4溶液滴加到Ni(NO3)2溶液中)所制得的NiB非晶态合金催化剂环丁烯砜加氢活性优于RaneyNi催化剂,对于NiB/TiO2负载型非晶态合金催化剂,镍的实际负载量达14.5%时,NiB/TiO2与NiB的环丁烯砜加氢催化活性相当。  相似文献   

4.
超声波对NiB非晶态合金催化剂性质的影响   总被引:5,自引:1,他引:5  
通过在化学还原过程中引入超声波制备了纯态NiB非晶态合金,并与同等条件下采用化学还原法制备的NiB非晶态合金进行比较.用XRD、ICP、TEM、SEM和SAXS等表征方法比较了样品的物性.以环丁烯砜加氢反应为探针考察了NiB非晶态合金催化剂的反应活性.结果表明,在化学还原法中引入超声波,生成的NiB非晶态合金的团簇更小,无序度更高,催化活性显著提高.  相似文献   

5.
粉末化学镀法制备负载型NiB非晶态合金催化剂   总被引:3,自引:0,他引:3  
 将Ag2O/MgO分别加入到NiSO4-NH3和NiSO4-乙二胺两种不同的镀液体系中,通过粉末化学镀法制备了NiB/MgO负载型非晶态合金催化剂,并与化学还原法制备的纯态NiB催化剂进行对比. 用XRD,ICP和TEM对催化剂进行了表征,并将它们用于环丁烯砜加氢反应. TEM结果表明,纯态NiB为团聚严重的纳米颗粒,而NiB/MgO催化剂上纳米NiB得到了很好的分散. 环丁烯砜加氢反应结果表明,NiB/MgO的催化活性远高于纯态NiB,尤其是用NiSO4-乙二胺体系制备的NiB/MgO-2的活性高于环丁烯砜加氢工业用Raney Ni催化剂,因而NiB/MgO具有良好的工业应用前景.  相似文献   

6.
王来军  李伟  张明慧  陶克毅 《催化学报》2003,24(11):816-820
 采用诱导沉积法及粉末化学镀法分别制备了纯态NiB及负载型NiB/TiO2非晶态合金催化剂.用XRD,ICP,SEM,TEM和DSC等手段对催化剂的物性及TiO2载体与NiB非晶态合金之间的相互作用进行了表征,考察了非晶态合金的结构、组成、形貌和热稳定性,并将其用于环丁烯砜加氢反应中.结果表明,相对于NiB而言,NiB/TiO2催化剂具有优良的热稳定性和催化活性,这缘于NiB和TiO2载体之间的相互作用及载体的分散作用.  相似文献   

7.
 用化学还原法制备了NiB和NiP非晶态合金催化剂,并用XRD,DSC,SEM和TEM鉴定了样品的非晶性,用ICP测定了样品的组成.在脉冲微反-色谱装置上考察了这两种催化剂催化苯加氢反应的活性.采用在线漫反射傅里叶变换红外光谱研究了这两种催化剂的还原及苯加氢反应过程.结果表明,所制备的NiB和NiP合金均为非晶态,且都是纳米尺度.NiB的粒度要比NiP小,晶化温度也比NiP低,表明Ni与B之间同Ni与P之间的相互作用不同.对苯加氢反应,NiB非晶态合金具有更大的优势,原位红外光谱结果证实催化剂的活性中心与还原态镍有关.  相似文献   

8.
华丽  胡长员  李凤仪 《分子催化》2006,20(3):240-244
用乙二胺功能化处理碳纳米管,增强其亲水性,有利于非晶态合金在碳纳米管负载.用化学还原法制备NiB/CNTs非晶态合金,以苯加氢探针为反应考察催化剂的活性,利用XRD、ICP、BET、TEM、TPR、TPD等方法对催化剂进行表征,结果表明乙二胺功能化处理,CNTs比表面积增大,镍的负载量增多,镍硼颗粒细化,从而提高了非晶态NiB/CNTs的催化活性,增强了其抗硫性.  相似文献   

9.
以次磷酸钠为还原剂化学镀铜的电化学研究   总被引:7,自引:0,他引:7  
通过电化学方法研究了以次磷酸钠为还原剂, 柠檬酸钠为络合剂的化学镀铜体系. 应用线性扫描伏安法, 检测了温度、pH值、镍离子含量对次磷酸钠阳极氧化和铜离子阴极还原的影响. 结果表明, 升高温度能够加速阳极氧化与阴极还原过程; pH值的提高可促进次磷酸钠氧化, 但抑制铜离子还原; 镍离子的存在不仅对次磷酸钠的氧化有强烈的催化作用, 而且与铜共沉积形成合金. 该合金有催化活性, 使化学镀铜反应得以持续进行.  相似文献   

10.
以膨胀石墨担载壳聚糖,采用金属诱导化学镀法制备了负载型Ni—B非晶态合金催化剂.通过X射线衍射、电感耦合等离子体发射光谱、扫描电子显微镜、透射电子显微镜和选区电子衍射等技术研究了壳聚糖对Ni-B催化剂非晶性质、组成、形貌、粒径及分散度的影响.以环丁烯砜加氢制环丁砜和对氯硝基苯加氢制对氯苯胺为探针反应,考察了壳聚糖对负载型Ni-B非晶态合金催化剂催化性质的影响,讨论了壳聚糖用量及水溶性壳聚糖的相对分子质量对催化剂性质的影响.结果表明,壳聚糖介质的引入能够提高活性组分的分散度,减小活性组分的粒径,从而明显提高了催化剂的催化加氢活性.当壳聚糖在载体表面形成单层分散时催化剂活性最高.分子质量相对较低的水溶性壳聚糖有利于生成粒径小、分散性好和催化活性高的Ni—B非晶态合金催化剂.  相似文献   

11.
采用改进的Hummers法制备了氧化石墨烯(GO),经水合肼还原得到石墨烯(RGO),通过浸渍法制备了石墨烯负载的镍基催化剂(Ni/RGO);对其催化二氧化碳甲烷化反应的性能进行了研究,并与以碳纳米管(CNTs)和活性炭(AC)为载体负载的Ni基催化剂进行了比较.由于催化剂的载体分别为RGO,CNTs和AC,所以Ni将会表现出不同的形态.利用红外光谱(FTIR)、比表面积(BET)测试、程序升温还原(H2-TPR)、X射线衍射(XRD)分析和透射电子显微镜(TEM)等表征手段对其结构及物理性质进行了表征.结果表明,Ni/RGO具有相对较大的比表面积(316 m~2/g),Ni在Ni/RGO上的颗粒尺寸(5.3 nm)小于其在Ni/CNTs(8.9 nm)和Ni/AC(11.6 nm)上的颗粒尺寸;该催化剂在二氧化碳甲烷化反应中具有更高的催化活性和选择性,而且具有良好的使用寿命.  相似文献   

12.
NiB和NiP超细非晶合金的退火晶化行为及催化性能   总被引:9,自引:0,他引:9  
 采用X射线吸收精细结构(XAFS),X射线衍射(XRD)和差热分析(DTA)等方法研究了以化学还原法制备的NiB和NiP超细非晶态合金催化剂在退火过程中的结构变化.XRD结果表明,在300℃下退火时,NiB超细非晶态合金晶化生成纳米晶Ni3B亚稳物相,NiP超细非晶态合金则主要晶化生成金属Ni和部分晶态Ni3P的混合物相;在500℃退火且近于完全晶化的条件下,大部分超细非晶态合金都晶化为金属Ni.XAFS结果定量地说明,对于NiB和NiP初始样品,第一近邻Ni-Ni配位的平均键长Rj分别为0.274和0.271nm,其结构无序度σS很大,分别为0.033和0.028nm,其热无序度σT分别为0.0069和0.0060nm.300℃退火后,晶化生成的Ni3B的Ni-Ni配位的σS降低到初始样品的33%,仅为0.011nm.500℃退火后,NiB样品的结构参数与金属Ni基本一致,但NiP样品的Ni-Ni配位的σS还远大于σT,仍为0.0125nm,表明NiB和NiP超细非晶态合金的退火晶化行为有很大的差别.纳米晶Ni3B催化苯加氢反应的转化率比超细Ni-B非晶态合金或多晶金属Ni更高,表明纳米晶Ni3B中的Ni与B原子组成了苯加氢催化反应的活性中心.  相似文献   

13.
具有优良结构稳定性的Ni73P11B16非晶态合金超细微粒   总被引:5,自引:0,他引:5  
具有优良结构稳定性的Ni_(73)P_(11)B_(16)非晶态合金超细微粒范以宁,胡征,许昭怡,陈懿(南京大学化学系,南京,210008)关键词非晶态,NiPB合金,超细微粒,结构稳定性非晶态合金催化剂以其优良的催化性能而引起人们的广泛关注[1]。在?..  相似文献   

14.
Ni/La_2O_3/Al_2O_3催化剂上甲烷干重整积炭表征与分析(英文)   总被引:3,自引:0,他引:3  
用传统的等体积浸渍法或蒸发法制备了Ni/La_2O_3/γ-Al_2O_3与Ni/La_2O_3/α-Al_2O_3催化剂,在没有稀释气体的条件下进行了甲烷干重整反应.采用H_2程序升温还原、N_2吸附脱附、X射线衍射、透射电子显微镜、热重-差示扫描热量以及程序升温加氢等手段对新鲜的与反应后的催化剂以及沉积的碳进行了表征.结果表明,催化剂上有四种含碳物种,以三种形态存在,即无定形碳(聚合态)、丝状碳或石墨碳.这些催化剂上积炭的数量与种类各不相同,依赖于催化剂中金属Ni颗粒的大小与载体的织构特性.丝状碳的形成及其形貌与金属Ni颗粒的大小有着密切的联系.Ni颗粒小于15nm时能抑制丝状碳的形成与沉积.减少积炭的数量,同时能产生较多的活性C_a物种,从而在一定程度上导致催化剂具有较好的活性与稳定性.  相似文献   

15.
以壳聚糖(CS)对SiO2进行表面修饰, 采用浸渍还原法制备了负载型Ni-B非晶态合金催化剂(Ni-B/CS/SiO2), 并采用XRD、FTIR、电感耦合等离子体发射光谱(ICP)、BET、XPS、TEM、SAED等表征方法研究了催化剂的非晶性质、原子组成、尺寸分布及粒径大小等. 考察了催化剂对糠醇加氢制四氢糠醇反应的催化性能, 并与没有壳聚糖修饰的Ni-B/SiO2催化剂及Raney Ni催化剂进行了对比. 结果表明, 加入壳聚糖制得的Ni-B/CS/SiO2催化剂的活性组分Ni-B团簇粒径更小, 表面活性组分浓度更高, 催化活性更高.  相似文献   

16.
在不同温度(673~1073K)下,于流动N2气中焙烧ZrO(OH)2醇(乙醇)凝胶,制备了不同尺寸的ZrO2-AN纳米晶(6~30nm).采用沉积-沉淀方法制备了相应的质量分数为0.7%的Au/ZrO2-AN催化剂.用XRD,XRF,TEM/HRTEM,EDS,N2吸附和1,3-丁二烯加氢反应对ZrO2-AN和Au/ZrO2-AN催化剂进行了表征.结果表明,在所有的Au/ZrO2-AN样品中,Au粒子的平均尺寸为4~5nm,ZrO2-AN的颗粒大小没有因为负载Au粒子而发生改变.1,3-丁二烯在Au/ZrO2-AN催化剂催化下能以100%的选择性进行加氢反应生成单烯烃.随着Au/ZrO2-AN催化剂中ZrO2-AN纳米晶尺寸的增加或“载体”焙烧温度的升高,1,3-丁二烯的转化率明显降低;1-丁烯的选择性先增加后减小,2-丁烯中反/顺异构体的摩尔比在0.5~1.0的范围内逐渐增大,TEM/HRTEM表征结果清楚地表明,Au/ZrO2-AN催化剂中Au粒子与ZrO2-AN颗粒接触界面/周边随ZrO2-AN颗粒尺寸的减小而明显增加,这很可能是含有更小尺寸ZrO2-AN纳米粒子的Au/ZrO2-AN催化剂具有更高的催化活性的重要原因.  相似文献   

17.
NiP非晶态合金的负载方法及催化剂的结构与催化性能   总被引:9,自引:0,他引:9  
马爱增 《分子催化》1999,13(5):345-350
采用NiB作为引导剂,使NiP完全定向沉积到载体上,用ICP,XRD,DSC,BET,TEM对制备的负载型NiP(B)催化剂进行表征,研究了这类催化剂对乙烯中微量乙炔的选择加氢性能,结果表明,NiP(B)以超细颗粒分散到载体上,由于少量B的存在,使其比相应的NiP或NiB具有更高的热稳定性。非晶态NiP(B)合金催化剂具有比相应的晶态合金更好的催化性能。低温氢气处理可以除去表面镍的氧化物,从而提高  相似文献   

18.
超细非晶镍合金的化学制备及类金属元素对性质的影响   总被引:8,自引:0,他引:8  
沈俭一  张庆红  李智渝  陈懿 《化学学报》1995,53(12):1168-1172
常温下分别使用KBH4和NaH2PO2在水溶液中还原Ni^2^+制得了Ni65B35和Ni89P11超细非晶合金(UFAAP), 同时使用KBH4和NaH2PO2还原Ni^2^+制得了Ni73P13B14UFAAP. Ni-P的粒径较大, 约为110nm, Ni-B的粒径较小, 约为20nm,Ni-P-B的粒径居其之间, 约为40nm。XPS表明, Ni-P间的相互作用强于Ni-B间的相互作用, Ni-P-B中P的电子状态与Ni-P中的相似。Ni-P-B比Ni-P的比表面积高得多,Ni-P-B比Ni-B和Ni-P具有更好的非晶态稳定性, 在573K热处理, 它的非晶态保持完好。晶化结果也表明Ni-P-B中Ni-P间的相互作用比Ni-B间的强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号