首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method for the concentration of bacterial solutions is presented that implements electrokinetic techniques, zone electrophoresis (ZE) and isoelectric focusing (IEF), in a microfluidic device. The method requires low power (< 3e-5 W) and can be performed continuously on a flowing stream. The device consists of two palladium electrodes held in a flow cell constructed from layers of polymeric film held together by a pressure-sensitive adhesive. Both ZE and IEF are performed with carrier-free solutions in devices in which the electrodes are in intimate contact with the sample fluid. IEF experiments were performed using natural pH gradients; no carrier ampholyte solution was required. Experiments performed in buffer alone resulted in significant electroosmotic flow. Pretreatment of the sample chamber with bleach followed by a concentrated solution of cationic detergent effectively suppressed electroosmotic flow.  相似文献   

2.
Das C  Zhang J  Denslow ND  Fan ZH 《Lab on a chip》2007,7(12):1806-1812
Two-dimensional (2D) protein separation is achieved in a plastic microfluidic device by integrating isoelectric focusing (IEF) with multi-channel polyacrylamide gel electrophoresis (PAGE). IEF (the first dimension) is carried out in a 15 mm-long channel while PAGE (the second dimension) is in 29 parallel channels of 65 mm length that are orthogonal to the IEF channel. An array of microfluidic pseudo-valves is created for introducing different separation media, without cross-contamination, in both dimensions; it also allows transfer of proteins from the first to the second dimension. Fabrication of pseudo-valves is achieved by photo-initiated, in situ gel polymerization; acrylamide and methylenebisacrylamide monomers are polymerized only in the PAGE channels whereas polymerization does not take place in the IEF channel where a mask is placed to block the UV light. IEF separation medium, carrier ampholytes, can then be introduced into the IEF channel. The presence of gel pseudo-valves does not affect the performance of IEF or PAGE when they are investigated separately. Detection in the device is achieved by using a laser induced fluorescence imaging system. Four fluorescently-labeled proteins with either similar pI values or close molecular weight are well separated, demonstrating the potential of the 2D electrophoresis device. The total separation time is less than 10 minutes for IEF and PAGE, an improvement of 2 orders of magnitude over the conventional 2D slab gel electrophoresis.  相似文献   

3.
Slais K 《Electrophoresis》2008,29(12):2451-2457
Continuous-flow isoelectric focusing (IEF) has the potential to be an important method in proteome analysis. The current devices do not fully use the advantages of IEF, because they do not utilize all its important features including changes in background conductivity during the focusing. A novel continuous-flow IEF method has been developed based on planar divergent flow and control of local electric field by conductivity of electrode electrolytes. A hydrophilized polypropylene nonwoven fabric was used for creation of flow and electric manifold, making the assembled device cheap, flexible and easy to set up and operate. By using the colored low-molecular-weight pI markers we demonstrated much higher speed of focusing in the new designed channel in comparison with a channel based on currently used rectangular geometry. The developed divergent-flow IEF combines the speed of micro flow channels with the separation efficiency and sample load capacity of preparative devices.  相似文献   

4.
Investigation of isoelectric focusing (IEF) kinetics has been performed to provide the theoretical basis for miniaturization of classical IEF in immobilized pH-gradients. Standard IEF demands colinearity of the electric field and pH-gradient directions (serial devices). It is shown that the IEF separation process based on a continuous, serial pH gradient is incompatible with miniaturization of separation devices. The new realization of the IEF device by a parallel IEF chip is suggested and analyzed. The main separation tool of the device is a dielectric membrane (chip) with conducting channels that are filled by Immobiline gels of varying pH. The membrane is held perpendicular to the applied electric field and proteins are collected (trapped) in the channels whose pH are equal to the pI of the proteins. The pH value of the surrounded aqueous solution is not equal to any channel's pH. The fast particle transport between different channels takes place due to convection in the aqueous solution. The new device geometry introduces two new spatial scales to be considered: the scale of transition region from a solution to the gel in a channel and a typical channel size. The corresponding time scales defining the IEF process kinetics are analyzed and scaling laws are obtained. It is shown both theoretically and experimentally that parallel IEF accelerates the fractionation of proteins by their pI down to several minutes and enables possible efficient sample collection and purification.  相似文献   

5.
Miniaturized capillary isoelectric focusing in plastic microfluidic devices   总被引:1,自引:0,他引:1  
Tan W  Fan ZH  Qiu CX  Ricco AJ  Gibbons I 《Electrophoresis》2002,23(20):3638-3645
We report the demonstration of miniaturized capillary isoelectric focusing (CIEF) in plastic microfluidic devices. Conventional CIEF technique was adapted to the microfluidic devices to separate proteins and to detect protein-protein interactions. Both acidic and basic proteins with isoelectric points (pI) ranging from 5.4 to 11.0 were rapidly focused, mobilized, and detected in a 1.2 cm long channel (50 microm deep x 120 microm wide) with a total analysis time of 150 s. In a device with a focusing distance of 4.7 cm, the separation efficiency for a basic protein, lysozyme, was achieved as high as 1.5 x 10(5) plates, corresponding to 3.2 million plates per meter. We also experimentally confirmed that IEF resolution is essentially independent of focusing length when the applied voltage is kept the same and within a range that it does not cause Joule heating. Further, we demonstrated the use of miniaturized CIEF to study the interactions between two pairs of proteins, immunoglobulin G (IgG) with protein G and anti-six histidine (anti-6xHis) with 6xHis-tagged green fluorescent protein (GFP). Using this approach, protein-protein interactions can be detected for as little as 50 fmol of protein. We believe miniaturized CIEF is useful for studying protein-protein interactions when there is a difference in pI between a protein-protein complex and its constitutent proteins.  相似文献   

6.
This paper describes a microfabricated free-flow electrophoresis device with integrated ion permeable membranes. In order to obtain continuous lanes of separated components an electrical field is applied perpendicular to the sample flow direction. This sample stream is sandwiched between two sheath flow streams, by hydrodynamic focusing. The separation chamber has two open side beds with inserted electrodes to allow ventilation of gas generated during electrolysis. To hydrodynamically isolate the separation compartment from the side electrodes, a photo-polymerizable monomer solution is exposed to UV light through a slit mask for in situ membrane formation. These so-called salt-bridges resist the pressure driven fluid, but allow ion transport to enable electrical connection. In earlier devices the same was achieved by using open side channel arrays. However, only a small fraction of the applied voltage was effectively utilized across the separation chamber during free-flow electrophoresis and free-flow isoelectric focusing. Furthermore, the spreading of the carrier ampholytes into the side channels resulted in a very restricted pH gradient inside the separation chamber. The chip presented here allows at least 10 times more efficient use of the applied potential and a nearly linear pH gradient from pH 3 to 10 during free-flow isoelectric focusing could be established. Furthermore, the application of hydrodynamic focusing in combination with free-flow electrophoresis can be used for guiding the separated components to specific chip outlets. As a demonstration, several standard fluorescent markers were separated and focused by free-flow zone electrophoresis and by free-flow isoelectric focusing employing a transversal voltage of up to 150 V across the separation chamber.  相似文献   

7.
The use of microfluidic chip-based two-dimensional separation holds great promise in the proteomics field, given its portability, simplicity, speed, efficiency, and throughput. However, inclusion of sodium dodecyl sulfate, reported to be necessary for increasing protein-resolving capability, was also accompanied by the loss of both protein conformation and biological function. Here, we describe separation of native proteins by introducing blue native gel electrophoresis into isoelectric focusing and gel electrophoresis (IEF/CGE)-coupled protein two-dimensional microfluidic chip electrophoresis. After assessing the influence of various experimental conditions, the best separation ability and reproducibility of blue native IEF/CGE (IEF/BN-CGE) chip electrophoresis achieved until now were demonstrated no matter whether with a simple simulated mixture or with a complex mixture of total Escherichia coli proteins. Finally, instead of theoretical calculations, the image analysis technique was also used for the first time to quantitatively evaluate the actual peak capacities of chip electrophoresis. According to the number of features abstracted in the electrophoresis patterns, the superiority of the IEF/BN-CGE two-dimensional microfluidic chip electrophoresis was then exhibited quantitatively. The high native protein separation performance makes this established chip electrophoresis method possible for further application in widely needed drug screening, analysis of bio-molecular function, and assays of protein–protein interactions.  相似文献   

8.
This paper describes a simple and reusable microfluidic device combining solution IEF (sIEF) with MALDI‐TOF MS for rapid proteomic and metabolic analysis of microliter samples. The device contains two glass plates with nanoliter microwell arrays, which can be assembled to form a fluidic path for sIEF separation, and reconfigured for dividing separated bands. One microliter samples can be loaded and separated by sIEF into static bands in 10~30 min. After a slipping operation, the static IEF bands can be divided into nanoliter droplets in microwells without mobilization, and the device can be opened for in situ MALDI‐TOF MS detection without loss of separation resolution. The performance of the device is characterized by separating and identifying intact proteins. The applicability in metabolic analysis is demonstrated by preliminary experiments on profiling small molecular metabolites in cerebrospinal fluid microdialysates from rat brain.  相似文献   

9.
An immobilized pH gradient was directly constructed on the inner wall of a microfluidic chip channel by photoimmobilizing focused carrier ampholytes onto the wall. A mixture of carbonic anhydrase, myoglobin, and trypsin inhibitor was successfully isoelectric‐focused and separated with good linearity between the pI values of proteins and the location of the focused bands. Furthermore, coating methods for the resistance of protein nonselective adsorption and simultaneously for pH gradient photocoupling were screened. The PEG‐silane coating method was found to be better than the cross‐linked polyacrylamide coating and aminosilane modification methods. Finally, based on the open tubular column mode of carrier ampholytes’ immobilization and effective antiadsorption coating, the immobilized pH gradient was reused and the chip was recycled for the first time. By virtue of its remarkable features including simplicity, convenience, high efficiency of protein enrichment and separation, and potential for coupling site‐selective IEF with other analytical or separation techniques, this novel method promises to be useful in several applications related with zwitterionic biomolecules.  相似文献   

10.
Das C  Fan ZH 《Electrophoresis》2006,27(18):3619-3626
This paper describes the investigation on the effects of separation length and voltage on IEF in a plastic microfluidic device. A LIF, whole-channel imaging detection (WCID) system was developed to monitor proteins while they were moving under an electric field. IEF was carried out in a separation medium consisting of carrier ampholytes and a mixture of linear polymers (hydroxyethylcellulose and hydroxypropylcellulose). We found that the IEF separation resolution is essentially independent of separation length when the same voltage is applied, which agrees with the theory. This result supports the notion that IEF in a microfabricated device leads to more rapid analysis without sacrificing the resolving power. A higher separation voltage also brought about more rapid analysis and superior separation resolution. IEF of two proteins (green fluorescence protein and R-phycoerythrin) was achieved in 1.5 min when 500 V was applied across a 1.9-cm channel. We found that a linear relationship exists between the focusing time and the inverse of the electrical field strength. In addition, we confirmed the phenomenon in which the pH gradient was compressed to the middle of a channel, and we found that the relative amount of the gradient compression decreased with the channel length.  相似文献   

11.
A novel microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using laser micromachining. The IEF microchip incorporated a separation channel (50 micro x 30 micro x 16 cm), three fluid connectors, and two buffer reservoirs. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, which were isolated from the separation channel by porous membranes. Direct ESI-mass spectrometry (MS) using electrosprays produced directly from a sharp emitter "tip" on the microchip was evaluated. The results indicated that this design can produce a stable electrospray and that performance was further improved and made more flexible with the assistance of a sheath gas and sheath liquid. Error analysis of the spectral data showed that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 h. The production of stable electrosprays directly from microchip IEF device represents a step towards easily fabricated microanalytical devices. Microchannel IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. Direct microchannel IEF-ESI-MS was demonstrated using the microfabricated chip with an ion-trap mass spectrometer for characterization of protein mixtures.  相似文献   

12.
Li Y  DeVoe DL  Lee CS 《Electrophoresis》2003,24(1-2):193-199
Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10-100 fold in comparison with conventional IEF.  相似文献   

13.
Although paper‐based analysis is known for centuries, only during the last decade this simple substrate became an object of detailed microfluidic studies. In order to obtain optimum performance and separation of the analytes in a microfluidic channel, devices should be optimized, both in terms of architecture and paper properties. Enzyme immobilization methods can not only increase the storage stability but also have an impact on the flow in paper matrix, providing additional charges, and changing the porous structure of paper. Therefore it should be guaranteed that the method of choice will not obstruct the flux in the final device. Paper‐based device proposed in this study was composed of a bioactive channel, Pt working electrode, pencil drawn pseudo‐reference electrode, a buffer filled sponge providing the wicking solution and a stack of wicking pads to guarantee continuous flow. Based on our previous research we chose 4 methods of enzyme immobilization relying on different phenomena (adsorption, covalent linkage, layer‐by‐layer, capsules). Different channel architectures were also evaluated in order to achieve optimum time of the enzymatic reaction, separation of peaks and the time of measurement. Experimental results were compared with computer simulations. Final device could quantify glucose (2.0–10.0 mmol L?1) and uric acid (0.1–1.2 mmol L?1) in their clinical range with good repeatability.  相似文献   

14.
The field of proteomics requires methods that offer high sensitivity and wide dynamic range. One of the strategies used to improve the dynamic range is sample prefractionation, such as microsolution isoelectric focusing (IEF). We have modified a commercial solution IEF instrument, the Rotofor, to prefractionate protein mixtures by carrier ampholyte-free solution IEF. The focusing chamber of the Rotofor was divided into several compartments by polyacrylamide membranes with imbedded Immobiline mixtures of specific pH values. When an electric field is applied, each protein migrates to the compartment confined by membranes with pH values flanking its isoelectric point. The approach was demonstrated for the focusing of myoglobin into a predicted compartment, as well as the separation of a complex soluble yeast protein mixture into several distinct fractions. The proteins were dissolved in water or 30% isopropanol. The method is applicable to both gel-based and solution-phase protein identification methods, without the need for further sample preparation.  相似文献   

15.
Sutarlie L  Yang KL 《Lab on a chip》2011,11(23):4093-4098
Monitoring spatial distribution of chemicals in microfluidic devices by using traditional sensors is a challenging task. In this paper, we report utilization of a thin layer of cholesteric liquid crystal for monitoring ethanol inside microfluidic channels. This thin layer can be either a polymer dispersed cholesteric liquid crystal (PDCLC) layer or a free cholesteric liquid crystal (CLC) layer separated from the microfluidic device by using a thin film of PDMS. They both show visible colorimetric responses to 4% of ethanol solution inside the microfluidic channels. Moreover, the spatial distribution of ethanol inside the microfluidic channel can be reflected as a color map on the CLC sensing layers. By using this device, we successfully detected ethanol produced from fermentation taking place inside the microfluidic channel. These microfluidic channels with embedded PDCLC or embedded CLC offer a new sensing solution for monitoring volatile organic compounds in microfluidic devices.  相似文献   

16.
Tan A  Pashkova A  Zang L  Foret F  Karger BL 《Electrophoresis》2002,23(20):3599-3607
A miniaturized multichamber device was constructed for solution isoelectric focusing (IEF) separation of complex peptide mixtures. The system, based on immobilized pH gels, consisted of 96 minichambers ( approximately 75 nuL each) arranged in eight rows. Neighboring chambers in a given row were separated by short glass tubes (4 mm inner diameter, 3 mm long), within which Immobiline gels of specific pH values were polymerized. During focusing, the device was sandwiched between two supporting blocks incorporating the reservoirs for anolyte and catholyte. In principle, multiple samples could be simultaneously fractionated, each separated into 12 fractions of various pI ranges. A variety of standard peptide mixtures and tryptic digests of proteins were separated by IEF using this device, and the fractions were characterized by mass spectrometry. For a codigested nine-protein mixture, both the total number of peptides identified and the average sequence coverage were similar to the results of ion-exchange chromatography (IEC), according to matrix assisted laser/desorption/ionization--time of flight (MALDI-TOF) data. The IEF separation provided concentrated and desalted fractions, suitable for an additional separation liquid chromatography, capillary electrophoresis (LC, CE) or mass spectrometry (MS) detection without additional sample cleanup. High loading capacity was achieved for the miniaturized multichamber IEF device. Importantly, a linear correlation was found between the experimentally determined and calculated pI values of peptides.  相似文献   

17.
Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte‐free isoelectric focusing on paper‐based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry. This paper‐based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost‐effective protein sample clean‐up method for target protein analysis with mass spectrometry.  相似文献   

18.
A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.  相似文献   

19.
Two-dimensional (2D) gel electrophoresis (GE) is one of the most powerful methods for nucleic acid and protein separation, but generally suffers from high laboratory efforts connected with high analysis costs. Therefore, we herein present the development of a miniaturized 2D capillary GE (CGE) device which allows for an efficient protein separation in analysis times of about 1.5 h. This integrated 2D-CGE chip comprises a first channel for isoelectric focussing (IEF), a second specially designed transfer channel, 300 parallel micro channels, each having a cross section of 50 microm x 50 microm, and buffer reservoirs. The present work discusses fabrication aspects, in particular the combination of different microfabrication technologies, experimental separation performances of isoelectric focussing (IEF) and CGE, and presents computer simulations and first experimental results of protein transfer from the first to the second dimension.  相似文献   

20.
《Electrophoresis》2018,39(8):1031-1039
A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro‐column, pH gradient generation, and fraction collection in a single device. Using a sieve micro‐valve, anion exchange particles were packed into a microchannel in order to realize a solid‐phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro‐column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin–fluorescein isothiocyanate conjugate (FITC‐BSA) and R‐Phycoerythrin (R‐PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号