首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A highly selective and sensitive liquid chromatography–tandem mass spectrometry (LC MS/MS) method was developed for the quantification of metronidazole (MTZ) in human feces. The analyte was recovered from feces after liquid–liquid extraction with ethyl acetate and separated on Waters Symmetry® C18 (100 × 4.6 mm, 5μm) column using 0.1% formic acid in water and acetonitrile (40:60, v/v) as the mobile phase. A stable‐deuterated internal standard metronidazole‐d4 (MTZ‐d4) was used in the study. Mass analysis was performed on a triple quadrupole mass spectrometer in the positive electrospray ionization mode. A linear response function of MTZ was established in the concentration range of 0.50–250 ng/g, based on dry mass. The mean extraction recovery of MTZ (97.28%) and MTZ‐d4 (96.76%) from spiked feces samples was consistent at higher as well as lower concentrations. Post‐column infusion analysis showed no ion‐suppression/enhancement effects and the mean IS‐normalized matrix factor ranged from 0.986 to 1.013. Spiked feces samples stored at −20 and − 70°C for long‐term stability were stable for at least 3 months, while extracted samples (dry and wet extracts) were stable up to 24 h. The method was applied to determine MTZ in feces of 12 healthy Indian subjects.  相似文献   

2.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

3.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

4.
A highly sensitive, selective and rapid ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the quantification of a Janus kinase (JAK) inhibitor, tofacitinib (TOF). The assay employed liquid–liquid extraction with methyl‐tert butyl ether to extract tofacitinib and tofacitinib‐13C3 15 N (as internal standard) from human plasma. The samples were analyzed on a UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile and 10.0 mm ammonium acetate, pH 4.5 (75:25, v/v) as the mobile phase within 1.4 min. The precursor/product ion transitions were monitored at m/z 313.3/149.2 and 317.4/149.2 for tofacitinib and tofacitinib‐13C3 15 N, respectively, in the positive electrospray ionization mode. The calibration curves were linear (r2 ≥ 0.9978) across the concentration range of 0.05–100 ng/mL. The mean extraction recovery of tofacitinib across quality controls was 98.6%. The intra‐ and inter‐batch precision (CV) and accuracy ranged from 2.1–5.1 and 96.2–103.1%, respectively. All validation results complied well with the current guidelines. The method is amenable to high sample throughput and was applied to determine TOF plasma concentration in a pharmacokinetic study with 12 healthy Indian subjects after oral administration of 5 mg tablets.  相似文献   

5.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive, selective and rapid ultra‐performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of flavokawain B in rat plasma using myrislignan as an internal standard. Sample preparation was accomplished through a protein precipitation extraction process. Chromatographic resolution of flavokawain B and the IS was achieved on an Agilent XDB‐C18 column (2.1 × 100 mm, 1.8 μm) using a gradient mobile phase comprising 0.1% formic acid in water and acetonitrile delivered at a flow rate of 0.5 mL/min. Flavokawain B and the IS eluted at 3.27 and 1.96 min, respectively. The total chromatographic run time was 6.0 min. A linear response function was constructed in the concentration range 0.524–1048 ng/mL. Method validation was performed as per the US Food and Drug Administration guidelines and the results met the acceptance criteria. Intra‐ and inter‐day accuracy and precision were in the ranges of ?14.3–13.2 and 3.4–11.8%, respectively. Flavokawain B was demonstrated to be stable under various stability conditions. This method has been applied to a pharmacokinetic study in rats.  相似文献   

7.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

8.
Tubuloside B, a novel neuroprotective phenylethanoid, is a major active constituent of Cistanche tubulosa and Cistanche deserticola. A specific and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the quantification of tubuloside B in rat plasma. Sample preparation was conducted through a protein‐precipitation extraction with methanol using tubuloside A as internal standard (IS). Chromatographic separation was achieved using a Capcell Pak C18 column (2.0 × 50 mm, 5 μm) with a mobile phase of methanol–10 mm ammonium acetate buffer (70:30, v/v) in an isocratic elution. Mass spectrometry analysis was performed in negative ionization mode with selected reaction monitoring transitions at m/z 665.1 → 160.9 for tubuloside B, and m/z 827.1 → 160.9 for IS. Calibration curves were linear over the range of 1.64–1640 ng/mL for plasma samples samples (R2 > 0.990). The lower limit of quantification (LLOQ) was 1.64 ng/mL. The intra‐ and inter‐day accuracy was between 92.3 and 113.0% with the RSD <9.23% at all LLOQ and quality control levels. Finally, this method was successfully applied in the pharmacokinetics study of tubuloside B after intravenous administration.  相似文献   

9.
A simple, rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and validated for simultaneous quantification of sitagliptin and simvastatin in human plasma. Carbamazepine was used as an internal standard (IS). The analytes and IS were extracted from the human plasma by liquid–liquid extraction technique. The reconstituted samples were chromatographed on an Alltima HP C18 column using an isocratic solvent mixture [acetonitrile–5 mm ammonium acetate (pH 4.5), 85:15 (v/v)] at a flow rate of 1.0 mL/min. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curves obtained were linear (r2 ≥ 0.99) over the concentration range of 0.10–501 and 0.05–105 ng/mL for sitagliptin and simvastatin, respectively. The results of the intra‐ and inter‐day precision and accuracy studies were well within the acceptable limits. Both the analytes were found to be stable in a battery of stability studies. The method is precise and sensitive enough for its intended purpose. A run time of 3.0 min for each sample made it possible to analyze more than 300 plasma samples per day. The developed assay was successfully applied to a pharmacokinetic study in human volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A selective and sensitive liquid chromatography tandem mass spectrometry method was developed for the simultaneous determination of salviaflaside and rosmarinic acid in rat plasma. Sample preparation was carried out through liquid–liquid extraction with ethyl acetate using curculigoside as internal standard (IS). The analytes were determined by selected reaction monitoring operated in the positive ESI mode. Chromatographic separation was performed on an Agilent Eclipse Plus C18 column (100 × 4.6 mm, 1.8 μm) with a mobile phase consisting of methanol–water–formic acid (50:50:0.1, v/v/v) at a flow rate of 0.3 mL/min. The run time was 1.9 min per sample and the injection volume was 5 μL. The method had an LLOQ of 1.6 ng/mL for salviaflaside and 0.94 ng/mL for rosmarinic acid in plasma. The linear calibration curves were fitted over the range of 1.6–320 ng/mL for salviaflaside and 0.94–188 ng/mL for rosmarinic acid in plasma with correlation coefficients (r2) >0.99. Intra‐ and inter‐day precisions (relative standard deviation) were < 13.5%, and accuracies (relative error) were between −8.6% and 14.5% for all quality control samples. The method was validated and applied to the pharmacokinetics of salviaflaside and rosmarinic acid in plasma after oral administration of Prunella vulgaris extract to rats.  相似文献   

11.
A selective, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of tigecycline (TGC) in human plasma, using tigecycline‐d9 as an internal standard (IS). Analytical samples were prepared using a protein precipitation method coupled with a concentration process. The analyte and IS were separated on a reversed‐phase Waters Acquity UPLC® BEH‐C18 column (2.1 × 50 mm i.d., 1.7 μm) with a flow rate of 0.25 mL/min. The mobile phase consisted of water, containing 0.2% formic acid (v/v) with 10 mm ammonium formate (A) and acetonitrile (B). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 586.2 → 513.1 and m/z 595.1 → 514.0 for TGC and IS, respectively. The linearity of the method was in the range of 10–5000 ng/mL. Intra‐ and inter‐batch precision (CV) for TGC was <9.27%, and the accuracy ranged from 90.06 to 107.13%. This method was successfully applied to the analysis of samples from hospital‐acquired pneumonia patients treated with TGC, and a validated population pharmacokinetic model was established. This developed method could be useful to predict pharmacokinetics parameters and valuable for further pharmacokinetics/pharmacodynamics studies.  相似文献   

12.
HR011303 is a novel and highly selective urate transporter 1 (URAT1) inhibitor. In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for quantification of HR011303 in beagle dog plasma. Plasma samples were pretreated with protein‐precipitation extraction by acetonitrile and added with a trifluoromethyl substituted analog of HR011303 as internal standard. The chromatographic separation was performed on a Shiseido C18 column (100 × 4.6 mm, i.d., 5 μm) by mobile phases consisting of 5 mm ammonium–formic acid (100:0.1) and acetonitrile–formic acid (100:0.1) solutions in gradient elution. The MS detection was conducted in electrospray positive ionization with multiple reactions monitoring at m/z 338 → 240 for HR011303 and m/z 328 → 230 for the internal standard using 25 eV argon gas collision induced dissociation. The established LC–MS/MS method showed good selectivity, sensitivity, precision and accuracy. The plasma pharmacokinetics of HR011303 in beagle dogs following both oral and intravenous administration were then successfully evaluated using this LC–MS/MS method.  相似文献   

13.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

14.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

15.
A simple, specific, and sensitive liquid chromatography–mass spectrometry (LC‐MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile–water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40–400 ng/mL for cyasterone in rat plasma. Intra‐day and inter‐day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Farrerol is a 2,3‐dihydro‐flavonoid isolated from rhododendron. In this study, a sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was developed for the determination of farrerol in rat plasma. Liquid–liquid extraction by ethyl ether was used for sample preparation. Chromatographic separation was achieved on an Agilent UHPLC XDB‐C18 column (2.1 × 100 mm, 1.8 μm) with water and methanol (30:70, v /v) as the mobile phase. An electrospray source was applied and operated in negative ion mode; selection reaction monitoring was used for quantification using target fragment ions m/z 299 → 179 for farrerol and m/z 267 → 252 for internal standard. Calibration plots were linear in the range of 2.88–1440 ng/mL for farrerol in rat plasma. Intra‐ and inter‐day precisions were <11.6%, and the accuracy ranged from −13.9 to 11.9%. The UHPLC–MS/MS method was successfully applied in pharmacokinetics and bioavailability studies of farrerol in rats.  相似文献   

17.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

18.
A simple and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous determination of isoquercitrin, kaempferol‐3‐O‐rutinoside and tiliroside in rat plasma. Plasma samples were deproteinized with methanol and separated on a Hypersil Gold C18 column (2.1 × 50 mm, i.d., 3.0 μm) using gradient elution with the mobile phase of water and methanol at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed with negative ion electrospray ionization in selected reaction monitoring mode. All analytes showed good linearity over their investigated concentration ranges (r2 > 0.99). The lower limit of quantification was 1.0 ng/mL for isoquercitrin and 2.0 ng/mL for kaempferol‐3‐O‐rutinoside and tiliroside, respectively. Intra‐ and inter‐day precisions were <8.2% and accuracy ranged from −11.5 to 9.7%. The mean extraction recoveries of analytes and IS from rat plasma were >80.4%. The assay was successfully applied to investigate the pharmacokinetic study of the three ingredients after oral administration of Rubus chingii Hu to rats.  相似文献   

19.
A simple, rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) assay method is proposed for the determination of tolvaptan in human plasma samples using tolvaptan d7 as internal standard (IS). Analyte and the IS were extracted from 100 μL of human plasma via simple liquid–liquid extraction. The chromatographic separation was achieved on a C18 column using a mixture of methanol and 0.1% formic acid buffer (80:20, v/v) as the mobile phase at a flow rate of 1.0 mL/min. The calibration curve obtained was linear (r2 ≥ 0.99) over the concentration range of 0.05–501 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The intra‐day and inter‐day precision (coefficient of variation) and accuracy results in three validation batches across five concentration levels were well within the acceptance limits. A run time of 2.0 min for each sample made it possible to analyze more samples in a short time, thus increasing the productivity. The proposed method was successfully applied to a pharmacokinetic study of 15 mg and 60 mg tolvaptan tablet formulation in healthy South Indian male subjects under fasting condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of two baccharane glycosides (hosenkoside A and hosenkoside K) of total saponins of Semen Impatientis in rat plasma using mogroside V as the internal standard (IS). The analytes were separated using a C18 RP Agilent XDB column (1.8 μm, 50 × 2.1 mm i.d.) and detection of the compounds was done using a TSQ Quantum triple quadrupole mass spectrometer coupled with a negative electrospray ionization source under selection reaction monitoring mode. According to the US Food and Drug Administration guidelines, the established method was fully validated and the results were proved within acceptable limits. The lower limits of quantification of both analytes were 5 ng/mL. The validated method was successfully applied to a pharmacokinetic study of orally administered the total saponins of Semen Impatientis in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号