首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to optimize a method to investigate the occurrence and to quantify the full isomeric composition of vitamin E (α-, β-, γ- and δ-tocopherols and tocotrienols) in 6 vegetables (raw and cooked), 3 herbs/spices, raw and cooked eggs, vegetable oils (canola, olive and soybean), flaxseed and sorghum (flour and seeds) and soy (flour) by HPLC with fluorescence detection. Different conditions of extraction and analysis were tested. The optimized method consisted of direct extraction with solvent (hexane:ethyl acetate, 85:15, v/v). For analysis normal phase column was used with mobile phase consisting of hexane:isopropanol:acetic acid (98.9:0.6:0.5) with isocratic elution and fluorescence detection. Excellent separation of all isomers was obtained along with adequate quantification in the foods analyzed. Recovery rates of standards ranged from 91.3 to 99.4%. The linearity range for each isomer varied from 2.5 to 137.5 ng/mL (R2 greater than 0.995 in all cases). Detection limits ranged from 21.0 to 48.0 ng/mL for tocopherols and from 56.0 to 67.0 ng/mL for tocotrienols, while quantification limits ranged from 105.0 to 240.0 ng/mL for tocopherols and from 280.0 to 335.0 ng/mL for tocotrienols. The optimized method was considered simple, fast and reliable, and also preserved vitamin E isomers when compared to validated methods involving saponification.  相似文献   

2.
A precise and selective liquid chromatographic procedure for determining tocopherol and tocotrienol isomers in vegetable oils, formulated preparations, and biscuits was developed and validated. The proposed method quantitates vitamin E in better conditions of recoverability and reproducibility than the standard saponification procedure. Tocopherols and tocotrienols were extracted in hexane from vegetable oils, passed through a silica Sep-pak, chromatographed on a mu-Bondapak C18 column with a mobile phase of methanol-water (95 + 5, v/v), identified at 292 nm, and detected with fluorescence procedure (excitation 296 nm, and emission 330 nm). The correlation coefficient on the calibration curve was 0.9995 over the range of 0.1 to 100 microg/mL. Overall recovery of vitamin E isomers was 93%; coefficients of variation for intra- and interday precision, < 2.25%. The results obtained from extraction methods 1 (with saponification) and 2 (without saponification) were compared by ANOVA test. Significant differences appeared between vitamin E isomers (p < or = 0.05).  相似文献   

3.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   

4.
In this work, a new, cheap, simple, fast, and low organic solvent consuming procedure is proposed for isolation, enrichment, and gas chromatographic determination of some phthalate esters in edible oils. The method is based on a combination of air‐assisted liquid–liquid extraction and dispersive liquid–liquid microextraction followed by a drying step under N2 gas. Several experimental parameters affecting both extraction and preconcentration steps were investigated and optimized. Under the optimum conditions for the proposed method, wide linear ranges (0.05–800 μg/L) and low detection limits (0.007–0.023 μg/L) were observed. The ranges of enrichment factors and extraction recoveries were 68–340 and 14–68%, respectively. Eventually, the target analytes were successfully determined in different edible oils using the proposed method.  相似文献   

5.
A method for the determination of 16 polycyclic aromatic hydrocarbons in water has been developed. First, we made a solid‐phase extraction column. After this, the parameters affecting the efficacy of the experimental method were optimized, including appropriate selection of a solid‐phase extraction column and cleanup conditions on columns. The separation was achieved by gas chromatography and detection with triple quadrupole tandem mass spectrometry. The method showed satisfactory linearity (R> 0.999) over the range assayed (0.01–1 μg/mL), and limits of quantification ranging from 0.0011 to 0.0199 μg/L. The recoveries ranged from 83 to 113%. The relative standard deviation is in the range 0.86–3.1%. The results indicated that this method had high selectivity and precision that was suitable for the simultaneous determination of 16 polycyclic aromatic hydrocarbons in water.  相似文献   

6.
Ultra‐performance convergence chromatography is an environmentally friendly analytical technique that employs dramatically reduced amounts of organic solvents compared to conventional chromatographic methods. In this study, a rapid, sensitive, and environmentally friendly method based on ultra‐performance convergence chromatography was developed for the quantification of four major chromones present in the roots of Saposhnikovia divaricata (Turcz.) Schischk. Using this method, the analysis time was significantly shortened compared to conventional high‐performance liquid chromatography techniques. In addition, the influence of cosolvent type, cosolvent ratio, column temperature, system pressure, and flow rate on the peak resolution was investigated. The proposed method was validated in terms of its limits of detection, limits of quantitation, linearity, precision, and accuracy. More specifically, the limits of detection of the four chromones ranged from 0.006 to 0.033 μg/mL, while the limits of quantitation ranged from 0.019 to 0.101 μg/mL. Our method also exhibited a good regression (r2 > 0.999), excellent precision (RSD < 0.60%), and acceptable recoveries (99.48–102.89%). Finally, the quantities of these four chromones present in 20 commercial samples from Korea and China were successfully evaluated using the developed method, indicating that the proposed method is suitable for the rapid and accurate quality control of Saposhnikovia divaricata.  相似文献   

7.
This paper represents the first report of a liquid chromatography coupled to electrospray ionization mass spectrometry method for simultaneously analyzing resveratrol and piceid isomers (cis and trans) in beeswax. An efficient extraction procedure has been proposed (average analyte recoveries were between 89 and 95%); this involved a solid–liquid extraction using a mixture of ethanol and water (80:20, v/v) and a concentration step in a rotary evaporator. The separation of all the compounds was achieved using a C18 column and a mobile phase composed of ammonium formate 0.03 M in water and acetonitrile in gradient elution mode at a flow rate of 1 mL/min. The method was fully validated in terms of selectivity, limits of detection and quantification, linearity, precision, and accuracy. The limits of detection and quantification ranged from 1.0 to 1.7 and 3.5 to 5.5 μg/kg, respectively. Finally, the proposed method was applied to analyze beeswax samples collected from experimental and organic apiaries.  相似文献   

8.
建立了气相色谱-质谱(GC-MS)同时测定植物油中α-、β-、γ-、δ-生育酚和α-、β-、γ-、δ-生育三烯酚等8种维生素E的分析方法。植物油样品经甲醇超声提取、浓缩、定容,在分时段选择离子监测(SIM)模式下分离分析,采用外标法进行定量。结果表明,8种维生素E可实现基线分离;在0.01~1 mg/L范围内,所有目标物均呈良好线性关系,相关系数均大于0.99;检出限和定量限分别为0.03~0.25 mg/kg和0.10~0.83 mg/kg;在芝麻油中分别添加10、50和250 mg/kg 3个水平的8种维生素E进行加标试验,平均回收率为87.5%~107.4%,相对标准偏差(RSD)≤ 7.5%。所建立的方法简单、准确、可靠,且灵敏度高,可用于测定植物油中8种维生素E的含量。采用上述方法对芝麻油、大豆油、菜籽油、葵花籽油、花生油、玉米油和棕榈油等7种共75个植物油样品中维生素E的含量进行测定。结果显示,芝麻油与其他6种植物油中的8种维生素E的组成和含量均有显著差异性,因此该方法可作为芝麻油掺入其他植物油的特征鉴定指标。  相似文献   

9.
In this study, the viability of two membrane‐based microextraction techniques for the determination of endocrine disruptors by high‐performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid–liquid extraction and hollow‐fiber‐supported dispersive liquid–liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2‐ethylhexyl‐4‐methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid–liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1‐octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5–4.6 μg/L and the limits of quantification were 2–16 μg/L. The analyte relative recoveries were 67–116%, and the relative standard deviations were less than 15.5%.  相似文献   

10.
A simple, accurate, and highly sensitive method was developed for the determination of 13 carbohydrates in polysaccharide of Spirulina platensis based on high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection and mass spectrometry. Samples were extracted with deionized water using ultrasonic‐assisted extraction, and the ultrasound‐assisted extraction conditions were optimized by Box–Behnken design. Then the extracted polysaccharide was hydrolyzed by adding 1 mol/L trifluoroacetic acid before determination by high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection and confirmed by high‐performance anion‐exchange chromatography coupled with mass spectrometry. The high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection method was performed on a CarboPac PA20 column by gradient elution using deionized water, 0.1 mol/L sodium hydroxide solution, and 0.4 mol/L sodium acetate solution. Excellent linearity was observed in the range of 0.05–10 mg/L. The average recoveries ranged from 80.7 to 121.7%. The limits of detection and limits of quantification for 13 carbohydrates were 0.02–0.10 and 0.2–1.2  μg/kg, respectively. The developed method has been successfully applied to ambient samples, and the results indicated that high‐performance anion‐exchange chromatography coupled with pulsed amperometric detection and mass spectrometry could provide a rapid and accurate method for the simultaneous determination of carbohydrates.  相似文献   

11.
A novel oil‐in‐salt liquid‐phase microextraction was developed and introduced for the extraction and concentration of the trace levels of active alkaloids in Coptis chinensis prior to being analyzed by high‐performance liquid chromatography with ultraviolet detection. Also, the oil‐in‐salt extraction mechanism was analyzed, the enrichment factor and extraction recovery were redefined, and the proposed method was compared with other methods. In the approach, the mixed solvent of pentanol/octanol (6:4, v/v) and NaCl (20% w/v) are immobilized on the permutite surface in turn to form oil‐in‐salt double membranes, through which the target analytes can be molecularized though salting‐out effect and be extracted by organic solvent. The main parameters affecting the approach were investigated and optimized. Under the optimized conditions, the enrichment factors of the analytes were 30–117, the linear ranges were 0.002–2 μg/mL for jatrorrhizine, coptisine, and palmatine, and 0.001–3 μg/mL for berberine (r 2 ≥ 0.9923). The limits of detection were less than 1 ng/mL. Satisfactory recoveries (84.3%–120.3%) and precision (0.9%–7.5%) were also obtained. These results confirm that the approach is a simple and reliable sample pretreatment procedure and allows for the quantification of active alkaloids in C. chinensis at actual concentration levels.  相似文献   

12.
A new analytical method for multiresidue determination of 16 multiclass pesticides in lettuce was developed using ultra‐high performance liquid chromatography with tandem mass spectrometry with a triple quadrupole mass analyzer and positive mode electrospray ionization, using a previously optimized quick, easy, cheap, effective, rugged, and safe method for sample preparation. Validation studies, according to document SANTE/11945/2015, demonstrated that the developed method is selective, accurate, and precise, providing recoveries of 70–120%, relative standard deviations ≤20% and quantification limits from 3 μg/kg. The method was compared with one based on high‐performance liquid chromatography with tandem mass spectrometry, in terms of chromatographic performance, detectability and matrix effect for five varieties of lettuce. The new method provided a reduction in the time for the chromatographic analysis of 50%, from 30 to 15 min, using a lower mobile phase flow rate (0.147 mL/min), which reduced the consumption of mobile phase by 25%, and injection of smaller amounts of sample (1.7 μL). Lower limits of quantification were obtained for almost all pesticides studied for green‐leaf lettuce. However, in relation to the matrix effect, four of the five types of lettuce studied presented higher matrix effects.  相似文献   

13.
A method is first established for the separation and determination of fenpropathrin enantiomer residues in apple puree, strawberry puree, and tomato puree considered a supplementary food for infants by supercritical fluid chromatography. After the sample was extracted with acetonitrile and cleaned up by a solid-phase extraction column, then it was separated by a CHIRALPAK AD-3 chiral column with gradient elution at a flow rate of 1.5 mL/min using methanol and supercritical carbon dioxide as the mobile phase, detected by ultraviolet detector at 230 nm wavelength and quantified with the external standard method. The limits of quantification of the two fenpropathrin enantiomers were both 0.2 mg/kg, the linear ranges were 1.0–20.0 mg/L with linear correlation coefficients greater than 0.9992, the recoveries in the spiked samples at 0.2, 0.4 and 2.0 mg/kg were from 80.6 to 105%, and the relative standard deviation reached 2.6–7.7%. This method has the advantages of convenient operation, good resolution, and environmental protection, which can satisfy the requirement of determination for fenpropathrin enantiomer residues in fruit and vegetable puree as supplementary food for infants.  相似文献   

14.
A sensitive method for determining sulfonamides in water was developed and validated through in situ derivatization and hollow‐fiber liquid‐phase microextraction with ultra‐high performance liquid chromatography and fluorescence detection. The target sulfonamides were sulfadiazine, sulfacetamide, sulfamerazine, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, and sulfisoxazole. Following in situ derivatization with fluorescamine, three‐phase hollow‐fiber liquid‐phase microextraction with an S 6/2 polypropylene hollow‐fiber membrane was applied automatically using a multipurpose autosampler. Experimental parameters including derivatization time, choice of organic phase, pH of donor and acceptor phase, stirring rate, extraction temperature and time were optimized. Under optimized conditions, the target sulfonamides achieved excellent linearity with correlation coefficients of 0.9924–0.9994 within the concentration range of 0.05–5 μg/L. The limits of detection of the eight sulfonamides were 3.1–11.2 ng/L, and the limits of quantification were 10.3–37.3 ng/L. Enrichment factors of 0.1 and 5 μg/L sulfonamides spiked in lake water were 14–60, and recoveries were 56–113% with relative standard derivations of 3–19%. Applied with the developed method, sulfamerazine and sulfamethoxazole were measurable in both influent and effluent water of the three sewage treatment plants in Guangzhou, China. The developed method was sensitive and provided an alternative method for simultaneously enriching and quantifying multiple sulfonamides in environmental water.  相似文献   

15.
A simple high‐performance liquid chromatography method has been developed for the determination of formaldehyde in human tissue. FA Formaldehyde was derivatized with 2,4‐dinitrophenylhydrazine. It was extracted from human tissue with ethyl acetate by liquid–liquid extraction and analyzed by high‐performance liquid chromatography. The calibration curve was linear in the concentration range of 5.0–200 μg/mL. Intra‐ and interday precision values for formaldehyde in tissue were <6.9%, and accuracy (relative error) was better than 6.5%. The extraction recoveries of formaldehyde from human tissue were between 88 and 98%. The limits of detection and quantification of formaldehyde were 1.5 and 5.0 μg/mL, respectively. Also, this assay was applied to liver samples taken from a biopsy material.  相似文献   

16.
The inclusion of a polyamidoamine dendrimer in a silica sol–gel yielded a solid nanosorbent that was used for the preconcentration, extraction, and determination of citalopram in hospital waste water, hemodialysis solution, and some drinking water. The method was developed by applying a novel nanosorbent for the solid‐phase microextraction of citalopram, containing a silica sol–gel reinforced by polyamidoamine second‐generation dendrimer, which was protected by a polypropylene hollow fiber. Plackett–Burman design and central composite design were utilized to evaluate the significance of several factors on the extraction efficiency. The adsorption mechanism and thermodynamic and kinetic aspects were studied. The adsorption process was exothermic and well fitted to the Bangham equation kinetic model. Under optimal conditions, the presented method was liner in the range of 0.05–100 μg/mL. The limits of detection of quantification of citalopram were 0.0095 and 0.031 μg m/L, respectively.  相似文献   

17.
We report the fabrication of an anion‐exchange monolithic column in a stainless‐steel chromatographic column (10 mm × 2.1 mm i.d.) using [2‐(acryloyloxy) ethyl]trimethylammonium chloride as the monomer and ethylene dimethacrylate as the crosslinker. The prepared monolith was developed as the adsorbent for the on‐line solid‐phase extraction of salicylic acid in various animal‐origin foodstuffs combined with liquid chromatography and tandem mass spectrometry. The monolith was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption analysis, and elemental analysis. Potential factors affecting the on‐line solid‐phase extraction and liquid chromatography with tandem mass spectrometry analysis were studied in detail. Under the optimized conditions, the total analysis time including cleanup and liquid chromatography with tandem mass spectrometry separation was 17 min. The developed method gave the linear range of 15–750 μg/kg, detection limits (S/N = 3) of 5 μg/kg, and quantification limits (S/N = 10) of 15 μg/kg. The recoveries obtained by spiking 10, 20, and 100 μg/kg of salicylic acid in the animal‐origin food samples were in the range of 85.2–98.4%. In addition, the monolith was stable enough for 550 extraction cycles with the precision of peak area ≤11.6%.  相似文献   

18.
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode‐array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10−2–10.0 μg/mL for caffeic acid, 1.3 × 10−3–1.9 μg/mL for p‐hydroxycinnamic acid, 2.8 × 10−3–4.1 μg/mL for ferulic acid, and 2.7 × 10−3–4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1–1.0 ng/mL, and satisfactory recoveries (92.5–111.2%) and precisions (RSDs 1.1–9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods.  相似文献   

19.
An electrospun polyethylene terephthalate/graphene oxide nanofibrous mat was fabricated and used as an effective and novel membrane for the solid‐phase extraction of tamoxifen in human blood plasma samples before detection by high‐performance liquid chromatography. The membrane was characterized by some identification techniques, such as FTIR spectroscopy, X‐ray diffraction, and scanning electron microscopy. The effective variables of the extraction procedure including desorption condition (type and volume of the eluent), adsorbent dose, pH of sample solution, salt concentration, and sample loading time were investigated and their optimum values were obtained using one factor at a time methodology. Under the optimized conditions, the results showed wide linear concentration range of 5–2000 ng/mL with a determination coefficient of 0.992. The limits of detection and limits of quantification were 1.3 and 5.0 ng/mL, respectively. The intra‐day and inter‐day precisions were 3.4 and 4.6%, respectively. The method was successfully applied to determination of tamoxifen in the blood plasma samples and satisfactory relative recoveries (92.6–98.3 %) were achieved.  相似文献   

20.
A class‐specific macrolide molecularly imprinted polymer was synthesized by precipitation polymerization using tulathromycin as the template and methacrylic acid as the functional monomer. The polymers revealed different specific adsorption and imprinting factor for macrolides with different spatial arrangement of side chains as well as lactonic ring size. And the molecularly imprinted polymer possessed maximum adsorption capacity (54.1 mg/g) and highest imprinting factor (2.4) toward 15‐membered ring azithromycin. On the basis of molecularly imprinted polymer dispersive solid‐phase extraction, a rapid, selective, and reproducible method for simultaneous determination of seven macrolide antibiotics residues in pork was established by using liquid chromatography with tandem mass spectrometry. At spiking levels of 5, 10, 25, and 100 μg/kg, average recoveries of seven macrolides ranged from 68.6 to 95.5% with intraday and interday relative standard deviations below 8%. The limits of detection and limits of quantification were 0.2–0.5 and 0.5–2.0 μg/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号