首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
用含氟丙烯酸酯无规共聚物制备超疏水膜   总被引:4,自引:0,他引:4  
用微乳液聚合法制备了丙烯酸全氟烷基乙酯和甲基丙烯酸甲酯的无规共聚物,并对其进行了表征.采用溶剂挥发成膜法一步制备了具有超疏水性的该聚合物膜,水滴在该聚合物膜上的静态接触角可达151°~160°,滚动角小于3°.通过扫描电子显微镜观察发现该聚合物膜表面分布了许多乳突状突起和微孔洞,并具有微米和纳米尺度相结合的复合杂化结构.该类超疏水表面的形成是由适度粗糙的表面和低表面能相互结合引起的.探讨了该类超疏水膜的形成机理.  相似文献   

2.
含氟丙烯酸酯共聚物制备超疏水表面及其形成机理的研究   总被引:7,自引:0,他引:7  
魏海洋  李欣欣  王康  贺文潇  韩哲文 《化学学报》2008,66(12):1470-1476
以丙烯酸全氟烷基乙基酯和甲基丙烯酸甲酯为共聚单体, 分别以用微乳液聚合法和溶液聚合法制备的无规共聚物和用可逆加成-断裂链转移制备的嵌段共聚物作为成膜共聚物, 并以1,1,2-三氟三氯乙烷作为溶剂, 采用溶剂挥发成膜法可以直接制备出超疏水膜, 聚合物膜对水的接触角可达160°. 改变聚合物结构和成膜条件, 探讨了该类超疏水膜的形成机理和影响因素. 发现膜的表面形貌和疏水性与共聚物的组成、结构、分子量以及成膜条件密切相关, 随着共聚物中氟含量的增大, 膜的表面形貌都趋于平滑; 而且, 无规共聚物比嵌段共聚物更易形成粗糙度好的膜; 同时, 较大的聚合物分子量和适宜的高的成膜温度都对形成粗糙结构有利.  相似文献   

3.
超疏水微纳结构表面广泛应用于自清洁、防冰、抗菌、柔性传感等领域,但其制备工艺仍面临一定的挑战.以阳极氧化铝(AAO)膜为模板,采用热压印在聚丙烯(PP)表面成型了规整的纳米结构阵列.对纳米结构阵列进行超声处理,在超声空化作用下,PP表面纳米结构转变为类花瓣状微纳结构.结果表明,经超声处理后的微纳结构PP表面的接触角从152.3°上升至160.0°,滚动角从11.5°降低至1.8°,表面黏附力从75μN降低至38μN,呈现典型的超疏水低黏附特性且其自清洁效应明显.采用模板法与超声辅助相结合的方法制备超疏水微纳表面具有方便快捷、成本低廉、效果显著的优点,有望应用于工业生产领域.  相似文献   

4.
静电纺丝制备超疏水TiO2纳米纤维网膜   总被引:4,自引:1,他引:3  
采用静电纺丝技术构筑粗糙表面, 再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰, 制备出接触角大于150°, 滚动角小于5°的TiO2超疏水表面. 该超疏水表面具有由TiO2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构, 这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致TiO2纳米纤维网膜的超疏水性. 这种超疏水的TiO2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.  相似文献   

5.
以常用工程材料硅树脂BP与St(o)ber法合成的二氧化硅(SiO2)分散液为原料,运用喷涂法(spray-coating)制备出了功能性微/纳粗糙(MNR)结构的超疏水涂层,其接触角可以达到146.5°,滚动角小于1°(测试液滴量为15μL).通过分析喷涂法制备复合涂层所需的条件,得出喷涂液pH=7.7-8.0时,在...  相似文献   

6.
将二氧化硅纳米颗粒和硅树脂制成混合液,采用喷涂法(spray-coating)制备出了具备超疏水性的复合涂层.研究了二氧化硅、硅树脂不同含量配比对涂层疏水性能的影响,结果表明复合涂层的接触角随二氧化硅含量的增加而增加.在二氧化硅含量大于3%(质量分数)时,涂层显现超疏水性;当二氧化硅含量为3%(质量分数)、硅树脂含量为7%(质量分数)时,涂层与水的接触角达到151.6°,滚动角接近0°.通过扫描电子显微镜(SEM)观察涂层表面的微观结构,发现超疏水性的涂层具备微-纳复合阶层结构,类球状突起粒径在5μm左右,类球状突起上分布纳米团聚颗粒,直径约为50 nm.这种类似荷叶表面的微(纳复合阶层结构,结合硅树脂的低表面能,使得复合涂层具备了超疏水性能.  相似文献   

7.
基于热模塑法制备HDPE仿生超疏水表面   总被引:1,自引:0,他引:1  
研究了热模塑法在制备超疏水高密度聚乙烯(HDPE)膜中的应用。以高岭土增强的聚二甲基硅氧烷(PDMS)为软模板,采用热模塑技术,将荷叶表面的微结构信息复制到HDPE膜表面。接触角测量结果显示,10%掺杂量的PDMS软模板复制得到的HDPE膜表面,与水的接触角高达156°,呈现超疏水性。扫描电镜照片显示,PDMS软模板具有与荷叶表面互补的"负型结构",而HDPE膜表面则具有与荷叶类似的微米—纳米复合粗糙结构。此法无需溶剂,可推广制备其它热塑性高聚物的超疏水表面。  相似文献   

8.
三角紫叶酢浆草叶面有很好的超疏水性,水滴在其表面的接触角约为150°,滚动角约为15°。研究发现,在三角紫叶酢浆草的叶面,分布有微纳米二元复合阶层结构的"星型"微凸体,微凸体之间有大量凹槽和空隙,复合阶层结构表面能吸附一层空气膜,液滴与其表面的接触是液、固、气的复合接触。此外,植物的叶面有低表面能的蜡状物,微纳米级的复合阶层结构及其表面的低表面能物质的协同效应使其表面显示出优异的超疏水性能。该研究有望为仿生超疏水材料的制备提供有益的启示与借鉴。  相似文献   

9.
采用接枝法和非均相乳液聚合与溶胶-凝胶法相结合技术,制备了不同形状的复合粒子,经低表面能的物质修饰后,其涂膜表面具有超疏水性。采用分形理论对涂膜表面疏水性进行评价,用分形维数表征涂膜表面微观形貌与疏水性能之间的关系,结果表明对于粗糙结构表面,分形维数较粗糙度因子能更好地反映表面形貌对水接触角的影响。  相似文献   

10.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

11.
Flexible superhydrophobic polyvinyl alcohol (PVA) films with silver bowl-like array structure are fabricated based on the thermal evaporation with sphere monolayer as templates and the modification of 1H, 1H, 2H, 2H-perfluorodecanethiol on silver surface. The silver microbowl arrays were composed of silver nanoparticles with an average diameter size of ca. 10 nm. The polymer films exhibit excellent stability and remarkable superhydrophobicity with a high water contact angle (CA) of about 163° and a low sliding angle (SA) of less than 3°.  相似文献   

12.
This paper reports the pi-A isotherms and spectroscopic characteristics of mixed Langmuir and Langmuir-Blodgett (LB) films of nonamphiphilic carbazole (CA) molecules mixed with polymethyl methacrylate (PMMA) and stearic acid (SA). pi-A isotherm studies of mixed monolayer as well as the remarkable change in collapse pressure of the mixed monolayer isotherms definitely show that CA is incorporated into PMMA and SA matrices. However, CA is stacked in the PMMA/SA chains and forms microcrystalline aggregates, as is evidenced from the scanning electron micrograph picture. The nature of these aggregated species in the mixed LB films has been revealed by UV-vis absorption and fluorescence spectroscopic studies. The presence of two different kinds of band systems in the fluorescence spectra of the mixed LB films have been observed. This may be due to the formation of low-dimensional aggregates in the mixed LB films. Intensity distribution of different band systems is highly sensitive to the microenvironment of two different matrices as well as also on the film thickness.  相似文献   

13.
Scanning angle (SA) Raman spectroscopy was used to measure the thickness and composition of polystyrene films. A sapphire prism was optically coupled to a sapphire substrate on which 6–12% (w/v) polystyrene in toluene was spin coated. Raman spectra were collected as the incident angle of the p-polarized, 785-nm excitation laser was varied from 56 to 70°. These angles span above and below the critical angle for a sapphire/polystyrene interface. The thickness of the polystyrene film was determined using a calibration curve constructed by calculating the integrated optical energy density distribution as a function of incident angle, distance from the prism interface and polymer thickness. The calculations were used to determine the incident angle where waveguide modes are excited within the polymer film, which is the angle with the highest integrated optical energy density. The film thicknesses measured by SA Raman spectroscopy ranged from less than 400 nm to 1.8 μm. The average percent uncertainty in the SA Raman determinations for all films was 4%, and the measurements agreed with those obtained from optical interferometery within the experimental uncertainty for all but two films. For the 1270-nm and 580-nm polystyrene films, the SA Raman measurements overestimated the film thickness by 5 and 18%, respectively. The dependence of the calibration curve on excitation polarization and composition of the polymer and bulk layers was evaluated. This preliminary investigation demonstrates that scanning angle Raman spectroscopy is a versatile method applicable whenever the chemical composition and thickness of interfacial polymer layers needs to be measured.  相似文献   

14.
SPECTRAL QUALITY OF TWO FLUORESCENT UV SOURCES DURING LONG-TERM USE   总被引:1,自引:0,他引:1  
The characteristics of a fluorescent ultraviolet (UV) lamp (UVB-313), UV-B transmitting cellulose diacetate (CA) and UV-B absorbing polyester (PE) films were determined during actual use. Although lamp emission was stable between 70 and 386 h of burn time (longer times were not investigated), the absorbance of UV-B and UV-A radiation by CA and PE films, respectively, increased with time when wrapped around lamps. As a result, the irradiance of lamp/filter combinations decreased steadily (even when CA films were presolarized for 10 h), making it necessary to compensate by adjusting the height of the lamp bank or by changing filters frequently. Note that corrective action is required for UV-A controls (PE films) as well as UV-B experimental treatments (CA films). Changing filters is preferable, since aging of CA filters caused shifts in the ratio of UV-B to UV-A. However, in spite of these shifts, the normalized spectrum of weighted biologically effective UV-B radiation did not change to a large extent.  相似文献   

15.
阵列聚合物纳米柱膜的超疏水性研究   总被引:8,自引:2,他引:6  
浸润性(又称润湿性,Wettability)是固体表面的一个重要特征,它主要由表面化学组成和表面的几何结构两方面控制[1~5].近年来,超疏水性固体表面由于在防雪、防污染、抗氧化以及防止电流等方面都有非常广阔的应用前景,引起了人们的极大关注[6~11].  相似文献   

16.
A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity.  相似文献   

17.
Seamless control of resistance to liquid drop movement for polar (water) and nonpolar alkane (n-hexadecane, n-dodecane, and n-decane) probe liquids on substrate surfaces was successfully demonstrated using molten linear poly(dimethylsiloxane) (PDMS) brush films with a range of different molecular weights (MWs). The ease of movement of liquid drops critically depended on polymer chain mobility as it relates to both polymer MW and solvent swelling on these chemically- and topographically identical surfaces. Our brush films therefore displayed lower resistances to liquid drop movement with decreasing polymer MW and surface tension of probe liquid as measured by contact angle (CA) hysteresis and tilt angle measurements. Subsequently, while mobility of water drops was inferior and became worse at higher MWs, n-decane drops were found to experience little resistance to movement on these polymer brush films. Calculating CA hysteresis as Δθ(cos) = cos θ(R) - cos θ(A) (θ(A) and θ(R) are the advancing and receding CAs, respectively) rather than the standard Δθ = θ(A) - θ(R) was found to be advantageous for estimation of the actual dynamic dewetting behavior of various probe liquids on an inclined substrate.  相似文献   

18.
X-ray diffraction (XRD) was used to investigate the microstructure and phase separation of mixed multilayers of cadmium stearate (SA) and behenate (BA) deposited onto hydrophilic glass by the Langmuir-Blodgett technique. No unitary fatty acid diffraction peaks in the XRD spectra of the mixed LB films, which reveals that domains in these samples are small and uniform. The interplanar spacing of the mixed LB films changes with the ratio of BA to SA in a step-shaped curve, which suggests that with the changing of the ratio between BA and SA, only three kinds of ordered structure form in the mixed system, and each microstructure, in particular, the short chains against long chains meshed microstructure can be maintained in a certain ratio range . In addition, for the meshed microstructure, the alkyl chains of both SA and BA stand straight or may have exactly the same small tilted angle from the substrate normal, as is indicated by the symmetric and asymmetric stretching vibration of methylene (CH2) peaks which are at 2847.80 and 2914.37 cm-1respectively in the Fourier transform infrared (FT-IR) transmission spectra. The mixed system always goes through a longitudinal regularity decreasing process when BA/SA is out of the intermediate ratio range (BA/SA: 1/5-1/1), which is illustrated by the relative XRD intensity changing with the ratio of BA/ SA in a \W" shape. These results for the mixed LB films of BA/SA provide meaningful data for choosing the mixture ratio when fabricating composite films with special structure.  相似文献   

19.
We investigated the correlation between surface wettability and internal structure of polyelectrolyte (PE)/PE and PE/inorganic multilayer films prepared by the spin self-assembly (SA) method. Spin self-assembled poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) multilayer films deposited from PE solutions of 10 mM show the distinct oscillation in contact angles with variation of the outermost PE layer, representing the saturated values in contact angles of individual PAH and PSS layers. These contact angles are also well consistent with the angles measured from respective PE layers (i.e., PAH and PSS) of the spin SA (PAH/CdS-COO-) and (CdS-NH3+/PSS) films carrying the flat interface between PE and inorganic CdS nanoparticle layers as confirmed by X-ray reflectivity. Furthermore, based on the contact angle of CdS-NH3+ layer in the ordered (CdS-NH3+/PSS) films, the change in surface wettability of CdS-NH3+ layers of two different spin SA (CdS-NH3+/poly(methacrylic acid) (PMAA)) multilayer films with ordered and disordered internal structure is also investigated. The films with ordered and disordered internal structure were fabricated by the pH adjustment of PMAA. The CdS-NH3+ layer in both CdS-NH3+/PSS and CdS-NH3+/PMAA multilayer films with the ordered internal structure has the contact angle of about 25 +/- 2 degrees irrespective of the PSS or PMAA sublayer. As a result, the same surface wettability of PE or inorganic layers, despite different sublayers, strongly indicates that the spin SA method in optimum condition allows the top surface to be completely covered with a low level ofinterdigitation with a sublayer at each deposition step, and this leads to the conclusion that physical and chemical characteristics of the sublayers have no significant influence on those of the outermost layer.  相似文献   

20.
Gas-phase esterification of microfibrillated cellulose (MFC) films   总被引:1,自引:0,他引:1  
The barrier properties of microfibrillated cellulose (MFC) films were improved by heterogeneous gas-phase esterification using various combinations of trifluoroacetic acid anhydride, acetic acid and acetic anhydride. The temperature, reagent ratio and reaction time were varied in the experimental design. The effects of two different purification procedures on the barrier properties of esterified MFC films were investigated. Washing with water did not affect the barrier properties compared to those of the films that were not washed, while the use of diethyl ether led to improved barrier properties as measured by the contact angle (CA) of water. The chemical composition of the modified films was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Alterations in hydrophobicity and oxygen permeability were evaluated using dynamic CA and oxygen transmission rate measurements, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号