首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
The photo‐induced substitution of a CO ligand has been used to prepare the halfsandwich complexes (η3‐C3H5)V(CO)4[P(C7H7)3] ( 1 ), (η5‐C5H5)V(CO)3[P(C7H7)3] ( 2 ), (η7‐C7H7)V(CO)2[P(C7H7)3] ( 3 ), (η6‐C6H3Me3)Cr(CO)2[P(C7H7)3] ( 4 ), and (η5‐C5H5)Mn(CO)2[P(C7H7)3] ( 7 ), in which the olefinic phosphane is coordinated as a conventional two‐electron ligand through the lone pair of electrons at phosphorus. Some analogues, which are permethylated at the aromatic ring ( 2* , 4* , 7* ), were included for comparison. Subsequent photo‐elimination of another CO group from 4 or 7 converts the olefinic phosphane into a chelating four‐electron ligand, leading to (η6‐C6H3Me3)Cr(CO)[P(C7H7)22‐C7H7)] ( 5 ) and (η5‐C5H5)Mn(CO)[P(C7H7)22‐C7H7)] ( 8 ), respectively. The η2‐coordinated double bond in 5 and 8 can be displaced by trimethylphosphite to give (η6‐C6H3Me3)Cr(CO)[P(C7H7)3][P(OMe)3] ( 6 ) and (η5‐C5H5)Mn(CO)[P(C7H7)3][P(OMe)3] ( 9 ). The 31P and 13C NMR spectra of all complexes are discussed, and X‐ray structure analyses for 2 and 8 are presented. Prolonged irradiation of 7 and 8 led to a di(cycloheptatrienyl)phosphido‐bridged dimer, {(η5‐C5H5)Mn(CO)[P(C7H7)2]}2( 10 ).  相似文献   

3.
Neodymium(III) peroxotitanate is used as a precursor for obtaining Nd2TiO5. The last one possesses numerous valuable electrophysical properties. TiCl4, Nd(NO3)3·6H2O and H2O2 in mol ratio 1:2:10 were used as starting materials. The reaction ambience was alkalized to pH = 9 with a solution of NH3. The obtained neodymium(III) peroxotitanate and intermediate compounds of the isothermal heating were proved by the help of quantitative analysis and infrared spectroscopy (IRS). It has Nd4[Ti2(O2)4(OH)12]·7H2O composition. The absorption band observed in IRS at 831 cm?1 relates to a triangular bonding of the peroxo group of Ti, at 1062 cm?1—terminal groups Ti–OH and at 1491 and 1384 cm?1—the bridging OH?-groups Ti–O(H)–Ti. Nd2TiO5 was obtained by thermal decomposition of neodymium(III) peroxotitanate. The isothermal conditions for decomposition were determined on the base of differential thermal analysis, thermogravimetric and differential scanning calorimetry results in the temperature range of 20–1000 °C. The mechanism of thermal decomposition of Nd4[Ti2(O2)4(OH)12]·7H2O to Nd2TiO5 was studied. In the temperature range of 20–208 °C, a simultaneous decomposition of the peroxo groups by the separation of oxygen and hydrate water is conducted and Nd4[Ti2O4(OH)12] is obtained. From 208 to 390 °C, the terminal OH?-groups are separated and Nd4[Ti2O7(OH)6] is formed. In the range of 390–824 °C, the bridging OH?-groups are completely decomposed to Nd2TiO5. The optimal conditions for obtaining nanocrystalline Nd2TiO5 are 900 °C for 6 h and 20–80 nm.  相似文献   

4.
The complex η55-(CO)3Mn(C5H4-C5H4)(CO)2Fe-η15-C5H4Mn(CO)3 was synthesized by the reaction of η5-Cp(CO)2Fe-η15-C5H4Mn(CO)3 with BunLi (THF, ?78 °C) and then with anhydrous CuCl2. The complex μ-(C≡C)[C5H4(CO)2Fe-η15-C5H4Mn(CO)3]2 was prepared by the reaction of η5-IC5H4(CO)2Fe-η15-C5H4Mn(CO)3 with Me3SnC≡CSnMe3 (2:1) in the presence of Pd(MeCN)2Cl2.  相似文献   

5.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

6.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

7.
The new alkoxysilyl-functionalized alkynes [HC≡CCH2N(H)C(=O)N(H)(CH2)3Si(OEt)3] and [HC≡C(C6H4)–N(H)C(=O)N(H)(CH2)3Si(OEt)3] have been synthesized using literature methods. These have been reacted with Fe3(CO)12, Ru3(CO)12 and Co2(CO)8. With the iron carbonyl only decomposition was observed: with Ru3(CO)12 splitting of the alkynes into their parent components and formation of the complexes (μ-H)Ru3(CO)9[HC=N(CH2)3Si(OEt)3], (μ-H)Ru3(CO)9[C–C(C6H4)NH2] and (μ-H)2Ru3(CO)9[HC–CCH3] occurred. Finally, with Co2(CO)8 formation of complexes Co2(CO)6(HC2R) R=(C6H4)NH2, CH2NH(CO)NH(CH2)3Si(OEt)3, (C6H4)NH(CO)NH(CH2)3Si(OEt)3 containing the intact alkynes could be obtained.  相似文献   

8.
Oxidative addition of diphenyl disulfide to the coordinatively unsaturated [Mn(CO)5]? led to the formation of low-spin, six-coordinate cis-[Mn(CO)4(SPh)2]?. The complex cis-[PPN][Mn(CO)4(SPh)2] crystallized in monoclinic space group P21/c with a = 9.965(2) Å, b = 24.604(5) Å, c = 19.291(4) Å, β = 100.05(2)°, V = 4657(2)Å3, and Z = 4; final R = 0.036 and Rw = 0.039. Thermal transformation of cis-[Mn(CO)4(SPh)2]? to [(CO)3Mn(μ-SPh)3Mn(CO)3]? was completed overnight in THF at room temperature. Additionally, reaction of [Mn(CO)5]? and PhSH in 1:2 mole ratio also led to cis-[PPN](Mn(CO)4(SPh)2]. Presumably, oxidative addition of PhSH to [Mn(CO)4]? was followed by a Lewis acid-base reaction to form cis-[Mn(CO)4(SPh)2]? with evolution of H2.  相似文献   

9.
The reactions of the [Mo33-Q)(μ2-Q)3(H2O)3(C2O4)3]2− complex (Q = S or Se) with CuX salts (X = Cl, Br, I, or SCN) in water produce the cuboidal heterometallic clusters [Mo3(CuX)(μ3-Q)4(H2O)3(C2O4)3]2−, which were isolated as the potassium and tetraphenylphosphonium salts. Two new compounds, K2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3]·6H2O and (PPh4)2[Mo3(CuBr)(μ3-S)4(H2O)3(C2O4)3]·7H2O, were structurally characterized. All compounds were characterized by elemental analysis and IR spectroscopy. The K2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] compound was characterized by the 77Se NMR spectrum; the (PPh4)2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3], (PPh4)2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] and K2[Mo3(CuSCN)(μ3-S)4(H2O)3(C2O4)3]·7H2O compounds, by electrospray mass spectra. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1639–1644, September, 2007.  相似文献   

10.
The reactions of [Ni16(C2)2(CO)23]4? and [Ni38C6(CO)42]6? with CuCl afforded mixtures of the previously reported [HNi42C8(CO)44(CuCl)]7? bimetallic octa-carbide cluster and the new [HNi43C8(CO)45]7? and [HNi44C8(CO)46]7? homo-metallic octa-carbides. The three species have very similar properties resulting always in co-crystals such as [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1?x]·6.5MeCN (x = 0.14) (86% [HNi42C8(CO)44(CuCl)]7?, 14%[HNi43C8(CO)45]7?/[HNi44C8(CO)46]7?) and [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1?x]·5.5MeCN (x = 0.30) (70% [HNi42C8(CO)44(CuCl)]7?, 30% [HNi43C8(CO)45]7?/[HNi44C8(CO)46]7?). The new homo-metallic octa-carbides can be obtained free from the Ni–Cu octa-carbido cluster by reacting [Ni10(C2)(CO)16]2? in thf with a stoichiometric amount of CuCl, and crystals of [NMe4]6[H2Ni43+xC8(CO)45+x]·6MeCN (x = 0.72), which contain [H2Ni44C8(CO)46]6? (72%) and [H2Ni43C8(CO)45]6? (28%), have been obtained. Despite the different charges and compositions, these anions display almost identical structures, which are also closely related to those previously reported for the bimetallic Ni–Cd octa-carbido clusters [Ni42+xC8(CO)44+x(CdCl)]7? and [HNi42+xC8(CO)44+x(CdBr)]6?. Indeed, all these clusters are based on the same Ni42C8 cage decorated by miscellaneous [CdX]+ (X = Cl, Br), [CuCl] and [Ni(CO)] fragments.  相似文献   

11.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

12.
The structure of the 1-D {[Co2(μ,η2-OOCPh)(μ-OOCPh)2(O(H)Me)2](μ-OOCPh)(HCCl3)} n polymer formed upon the dissolution of single crystals of the mononuclear Co(OOPh)2[O(H)Me]4 adduct containing coordinated labile methanol molecules in boiling chloroform was studied by X-ray diffraction.  相似文献   

13.
The cis-[Mn(CO)4(TePh)2]?, similar to bidentate ligand PhTe(CH2)3TePh, acts as a “chelating metalloligand” for the synthesis of metallic tellurolate compounds. The reaction of cis[Mn(CO)4(TePh)2]? with BrMn(CO)5 in THF leads to a mixture of products[(CO)3,BrMn(μ-TePh)2Mn(CO)4]? (1) and Mn2(μ-TePh)2(CO)g (2). Complex 1 crystallizes in the triclinic space group Pl? with a = 11.309(3) Å, b = 14.780(5) Å, c = 19.212(6) Å, a = 76.05(3)° β = 72.31(3)°, γ = 70.41(3)° V = 2848(2) Å3, Z = 2. Final R = 0.034 and Rw = 0.035 resulting from refinement of 10021 total reflections with 677 parameters, Dropwise addition of (MeTe)2 to a solution of [Me3O][BF4] in CH3CN leads to formation of [Me2TeTeMe][BF4], a potential MeTe+ donor ligand. In contrast to oxidative addition of diphenyl ditelluride to [Mn(CO)s]? to give cis-[Mn(CO)4(TePh)2]? which was thermally transformed into [(CO)3Mn(μ-TePh)3Mn(CO)3]?, reaction of [Mn(CO)5]?with [Me2TeTeMe]+ proceeded to give the monomeric species MeTeMn(CO)5 as initial product which was then dimerized into Mn2(μ-TeMe)2(CO)g (4).  相似文献   

14.
1,2-Diphenyl-1,2-dimethyldisilanylene-bridged bis-cyclopentadienyl complex[η~5,η~5-C_5H_4PhMeSiSiMePh-C_5H_4]Fe_2(CO)_2(μ-CO)_2(1)was synthesized by a modified procedure,from which the trans-isomer 1b that was pre-viously difficult to obtain has been isolated for the first time.More interestingly,two new regio-isomers[η~5,η~5C_5H_4SiMe(SiMePh_2)C_5H_4]Fe_2(CO)_2(μ-CO)_2(2)and [η~5,η~5-C_5H_4Me_2SiSiPh_2C_5H_4]Fe_2(CO)_2(μ-CO)_2(3)were occa-sionally obtained during above process,the novel structures of which opened up new options for further study ofthis type of Si—Si bond-containing transition metal complexes.The molecular structure of 2 has been determinedby the X-ray diffraction method.  相似文献   

15.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

16.
The low temperature of decomposition of some calcium carbonates and the bending of the TG curves of hydrated cement between 500 and 800°C suggested the presence of some complex compound(s), which needed complementary investigation (XRD, TG). Stepwise transformation of portlandite (and/or lime) into calcium carbonate, with intermediate steps of calcium carbonate hydroxide hydrates (CCH-1 to CCH-5), was indicated by the previous study of two OPC. This was checked here on four cements ground for t g=15, 20, 25 and 30 min and hydrated either in water vapour, successively at RH=1.0, 0.95 and 0.5 for 2 weeks each (WR1, WR2 and WR3, respectively) or as mortars in liquid water (1m), followed by WR as above. The d[001] spacing of portlandite was confirmed to vary: here between the lowest and the highest standard values. The diffractograms of n=32 different samples were analyzed for presence of standard CCH peaks, generally slightly displaced. These were: CCH-1 [Ca3(CO3)2(OH)2]: N=11 peaks, of three different d[hkl] spacings, CCH-2 [Ca6(CO2.65)2(OH657)7(H2O)2]: N=10 for two d[hkl], CCH-3 [Ca3(CO3)2(OH)2·1.5H2O]: N=14 for five d[hkl], CCH-4, ikaite [CaCO3(H2O)6]: N=13 for six d[hkl], CCH-5[CaCO3(H2O)]: N=15 for five d[hkl]. Thus the most probable is the presence of the last three. The stepwise transformation of Ca(OH)2 into CaCO3 was confirmed:  相似文献   

17.
The clusters [Ru4(μ-CO)(CO)1041212-C5H6)2] (1), [Ru4(CO)8441113-C10H12)(μ3321-C5H6)] (2) and [Ru4(CO)10441131-C15H16)] (3) have been prepared from the reaction of [H4Ru4(CO)12] with 1-penten-3-yne. This reaction is observed to proceed with dimerization and trimerization through the triple bonds. The products were characterized spectroscopically by 1H- and 13C-NMR. X-ray crystal structures of compounds 1 and 2 are also described.  相似文献   

18.
[MoCl(η-C3H5)(CO)2(MeCN)2] dissolved in aprotic solvents is extensively ionised to [Mo(η-C3H5)(CO)2(MeCN)3]+[Mo2Cl3(η-C3H5)2(CO)4]- with the liberation of free acetonitrile. The corresponding bromo- complex shows similar but less pronounced ionisation in (CD3)2CO, whereas the iodo-complex retains its molecular structure.  相似文献   

19.
The structure of the [Au(Dien)Cl]2[Re4Te4(CN)12]·5H2O compound prepared in an aqueous medium by the reaction of a gold(III) complex [Au(Dien)Cl]Cl2 with a tetranuclear tetrahedral tellurocyanide cluster complex of rhenium K4[Re4Te4(CN)12]·5H2O is determined by single crystal X-ray diffraction.  相似文献   

20.
X-Ray Structure Analysis of a Carbene Addition Product to Dicarbonyl-η5-methylcyclopentadienyltetrahydrofuranmanganese, μ-Cyclobuta[1, 2-a:3, 4-a′] dicyclopentene-bis-(dicarbonyl-η5-methylcyclopentadienylmanganese),[( η5-C5H4CH3)Mn(CO) 2]22-C10H8) The crystal and molecular structure of the title compound has been determined by means of X-ray structure analysis. The species is the first example of an oligocyclic dicarbene stabilized by complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号