首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Transition metal complexes that exhibit metal–ligand cooperative reactivity could be suitable candidates for applications in water splitting. Ideally, the ligands around the metal should not contain oxidizable donor atoms, such as phosphines. With this goal in mind, we report new phosphine‐free ruthenium NCN pincer complexes with a central N‐heterocyclic carbene donor and methylpyridyl N‐donors. Reaction with base generates a neutral, dearomatized alkoxo–amido complex, which has been structurally and spectroscopically characterized. The tert‐butoxide ligand facilitates regioselective, intramolecular proton transfer through a C?H/O?H bond cleavage process occurring at room temperature. Kinetic and thermodynamic data have been obtained by VT NMR experiments; DFT calculations support the observed behavior. Isolation and structural characterization of a doubly dearomatized phosphine complex also strongly supports our mechanistic proposal. The alkoxo–amido complex reacts with water to form a dearomatized ruthenium hydroxide complex, a first step towards phosphine‐free metal–ligand cooperative water splitting.  相似文献   

2.
A series of Ru complexes containing lutidine‐derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver‐carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N‐heterocyclic carbene fragments. In the presence of tBuOK, the Ru‐CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand‐assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru‐CNC complex 5 e (BF4) is able to add aldimines to the metal–ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer‐sphere stepwise hydrogen transfer to the C?N bond assisted either by the pincer ligand or a second coordinated H2 molecule.  相似文献   

3.
A series of imidazolium chlorides for the formation of tridentate CNO‐donor palladium(II) complexes featuring N‐heterocyclic carbene moieties have been developed from cheap and readily available starting materials with high yields. Their palladium complexes were prepared by reactions between the ligand precursors and PdCl2 using K2CO3 as base in pyridine with reasonable yields. These air‐stable metal complexes were characterized using 1H NMR and 13C{1H} NMR spectroscopy and elemental analyses. Heteronuclear multiple bond correlation experiments were performed to identify key NMR signals of these compounds. The structures of two of the complexes were also established by single‐crystal X‐ray diffraction analysis. One of these complexes was successfully applied in the direct C―H functionalization reactions between heterocyclic compounds and aryl bromides, producing excellent yields of coupled products. The coupling reactions were scalable, allowing grams of coupled products to be obtained with a mere 2 mol% of Pd loading. The catalyst system developed allowed the large‐scale preparation of several push–pull chromophores straightforwardly. Photophysical properties based on UV–visible and fluorescence spectroscopy for these chromophores were investigated. Deep blue photoluminescence with moderate quantum efficiency and twisted intramolecular charge transfer excited state were observed for these chromophores. Density functional theory (DFT) and time‐dependent DFT calculations were performed to support the experimental results.  相似文献   

4.
Deprotonation of the 1‐isopropyl‐3‐(phenylamino)pyridin‐1‐ium iodide gives the corresponding neutral betaine, which is formalised as a pyridinium‐amido ligand when coordinated to a metal. Spectroscopic, structural and theoretical methods have been used to investigate the metal–ligand bonding, ligand dynamics and electron distribution. Collectively, the data show that the ligand can be characterised as a pseudo‐amide and is a strong donor akin to alkyl phosphines and N‐heterocyclic carbenes. Furthermore, rotation about both N substituent C? N bonds occurs, which is in contrast to the two alternative pyridinium positional isomers that exhibit neutral resonance structures. For comparison, compounds and complexes derived from norharman were prepared, which contain an additional C? C bond supporting conjugation and the accessibility of a neutral resonance structure. Notwithstanding the formal neutral structure, norharman‐derived ligands are comparably strong donors, and have the additional advantage of exhibiting stability to dioxygen and water.  相似文献   

5.
A tetranuclear silver(I) N‐heterocyclic carbene (NHC) complex bearing a macrocyclic, exclusively methylene‐bridged, tetracarbene ligand was synthesized and employed as transmetalation agent for the synthesis of nickel(II), palladium(II), platinum(II), and gold(I) derivatives. The transition metal complexes exhibit different coordination geometries, the coinage metals being bound in a linear fashion forming molecular box‐type complexes, whereas the group 10 metals adapt an almost ideal square planar coordination geometry within the ligand's cavity, resulting in saddle‐shaped complexes. Both the AgI and the AuI complexes show ligand‐induced metal–metal contacts, causing photoluminescence in the blue region for the gold complex. Distinct metal‐dependent differences of the coordination behavior between the group 10 transition metals were elucidated by low‐temperature NMR spectroscopy and DFT calculations.  相似文献   

6.
A metal‐containing N‐heterocyclic germylene based on a N‐mesityl (Mes)‐substituted oxalamidine framework is reported. The precursor (MesN=)2C–C(–N(H)Mes)2 ( 1 H2) was converted into its rhodium complex [Rh(κ2N‐ 1 H2)(cod)][OTf] ( 2 ) (cod = 1,5‐cyclooctadiene; OTf = triflate) in 62 % isolated yield. Subsequent reaction of 2 with Ge{N(SiMe3)2}2 gave the crystalline N‐heterocyclic germylene [Rh(cod)(μ‐ 1 )Ge][OTf] ( 3 ) in 50 % yield. The compounds under study were fully characterized by various methods, also including X‐ray crystallographic studies on single crystals of 2 and 3 . Density functional theory (DFT) calculations revealed that π conjugation in the bridging oxalamidine framework is increased and n(N)–p(Ge) π bonding is decreased upon κ2N metal coordination; a further weakening of the Ge–N bond occurs through triflate coordination to the GeII atom. Nevertheless, preliminary coordination studies revealed that 3 behaves as 2‐electron (L ‐type) germylene donor ligand. Treatment of 3 with [Ir(cod)Cl]2 furnished the heterobimetallic complex [Rh(cod)(μ‐ 1 )Ge‐Ir(cod)Cl][OTf] ( 4 ), as evidenced by NMR spectroscopic investigations and DFT calculations.  相似文献   

7.
Coordination of ambiphilic diphosphine–silane ligands [o‐(iPr2P)C6H4]2Si(R)F (R=F, Ph, Me) to AuCl affords pentacoordinate neutral silicon compounds in which the metal atom acts as a Lewis base. X‐ray diffraction analyses, NMR spectroscopy, and DFT calculations substantiate the presence of Au→Si interactions in these complexes, which result in trigonal‐bipyramidal geometries around silicon. The presence of a single electron‐withdrawing fluorine atom is sufficient to observe coordination of the silane as a σ‐acceptor ligand, provided it is positioned trans to gold. The nature of the second substituent at silicon (R=F, Ph, Me) has very little influence on the magnitude of the Au→Si interaction, in marked contrast to N→Si adducts. According to variable‐temperature and 2D EXSY NMR experiments, the apical/equatorial positions around silicon exchange in the slow regime of the NMR timescale. The two forms, with the fluorine atom in trans or cis position to gold, were characterized spectroscopically and the activation barrier for their interconversion was estimated. The bonding and relative stability of the two isomeric structures were assessed by DFT calculations.  相似文献   

8.
The mechanism of the trans to cis isomerization in Ru complexes with a chelating alkylidene group has been investigated by using a combined theoretical and experimental approach. Static DFT calculations suggest that a concerted single‐step mechanism is slightly favored over a multistep mechanism, which would require dissociation of one of the ligands from the Ru center. This hypothesis is supported by analysis of the experimental kinetics of isomerization, as followed by 1H NMR spectroscopy. DFT molecular dynamics simulations revealed that the variation of geometrical parameters around the Ru center in the concerted mechanism is highly uncorrelated; the mechanism actually begins with the transformation of the square‐pyramidal trans isomer, with the Ru?CHR bond in the apical position, into a transition state that resembles a metastable square pyramidal complex with a Cl atom in the apical position. This high‐energy structure collapses into the cis isomer. Then, the influence of the N‐heterocyclic carbene ligand, the halogen, and the chelating alkylidene group on the relative stability of the cis and trans isomers, as well as on the energy barrier separating them, was investigated with static calculations. Finally, we investigated the interconversion between cis and trans isomers of the species involved in the catalytic cycle of olefin metathesis; we characterized an unprecedented square‐pyramidal metallacycle with the N‐heterocyclic carbene ligand in the apical position. Our analysis, which is relevant to the exchange of equatorial ligands in other square pyramidal complexes, presents evidence for a remarkable flexibility well beyond the simple cistrans isomerization of these Ru complexes.  相似文献   

9.
The molecular structure of the benzimidazol‐2‐ylidene–PdCl2–pyridine‐type PEPPSI (pyridine‐enhanced precatalyst, preparation, stabilization and initiation) complex {1,3‐bis[2‐(diisopropylamino)ethyl]benzimidazol‐2‐ylidene‐κC2}dichlorido(pyridine‐κN)palladium(II), [PdCl2(C5H5N)(C23H40N4)], has been characterized by elemental analysis, IR and NMR spectroscopy, and natural bond orbital (NBO) and charge decomposition analysis (CDA). Cambridge Structural Database (CSD) searches were used to understand the structural characteristics of the PEPPSI complexes in comparison with the usual N‐heterocyclic carbene (NHC) complexes. The presence of weak C—H…Cl‐type hydrogen‐bond and π–π stacking interactions between benzene rings were verified using NCI plots and Hirshfeld surface analysis. The preferred method in the CDA of PEPPSI complexes is to separate their geometries into only two fragments, i.e. the bulky NHC ligand and the remaining fragment. In this study, the geometry of the PEPPSI complex is separated into five fragments, namely benzimidazol‐2‐ylidene (Bimy), two chlorides, pyridine (Py) and the PdII ion. Thus, the individual roles of the Pd atom and the Py ligand in the donation and back‐donation mechanisms have been clearly revealed. The NHC ligand in the PEPPSI complex in this study acts as a strong σ‐donor with a considerable amount of π‐back‐donation from Pd to Ccarbene. The electron‐poor character of PdII is supported by π‐back‐donation from the Pd centre and the weakness of the Pd—N(Py) bond. According to CSD searches, Bimy ligands in PEPPSI complexes have a stronger σ‐donating ability than imidazol‐2‐ylidene ligands in PEPPSI complexes.  相似文献   

10.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

11.
A series of [(4‐methylphenyl)sulfonyl]‐1H‐amido‐2‐phenyl‐2‐oxazoline ligands, HTs‐ROz, has been synthesized by the reaction of substituted 2‐(2‐aminophenyl)oxazolines and p‐toluensulfonyl chloride. The electrochemical oxidation of a sacrificial zinc anode in an acetonitrile solution of the corresponding ligand gave compounds of general formula [Zn(Ts‐ROz)2]. All complexes have been characterized by microanalysis, IR and 1H NMR spectroscopy and single‐crystal X‐ray diffraction. In all cases, the metal atom is coordinated by the nitrogen atoms of two monoanionic ligands.  相似文献   

12.
In the novel transition metal isothio­cyanate complex of N‐(2‐hydroxy­ethyl)ethyl­enediamine (hydet‐en) with copper, [Cu(NCS)2(C4H12N2O)], the Cu atom lies in a distorted square‐pyramidal environment, coordinated by four N atoms in the basal plane and an apical O atom. The hydet‐en ligand is N,N,O‐tridentate, in contrast to the disposition in previously studied complexes, while the isothio­cyanate ions act as N‐atom donor ligands. The monomeric units are linked to one another by hydrogen bonds.  相似文献   

13.
Owing to increasing interest in the use of N‐heterocyclic carbenes (NHCs) based on imidazolidinium ions as ligands in the design of highly efficient transition‐metal‐based homogeneous catalysts, the characterizations of the 1‐ferrocenylmethyl‐3‐(2,4,6‐trimethylbenzyl)imidazolidin‐3‐ium iodide salt, [Fe(C5H5)(C19H24N2)]I, (I), and the palladium complex trans‐bis(3‐benzyl‐1‐ferrocenylmethyl‐1H‐imidazolidin‐2‐ylidene)diiodidopalladium(II), [Fe2Pd(C5H5)2(C16H17N2)2I2], (II), are reported. Compound (I) has two iodide anions and two imidazolidinium cations within the asymmetric unit (Z′ = 2). The two cations have distinctly different conformations, with the ferrocene groups orientated exo and endo with respect to the N‐heterocyclic carbene. Weak C—H donor hydrogen bonds to both the iodide anions and the π system of the mesitylene group combine to form two‐dimensional layers perpendicular to the crystallographic c direction. Only one of the formally charged imidazolidinium rings forms a near‐linear hydrogen bond with an iodide anion. Complex (II) shows square‐planar coordination around the PdII metal, which is located on an inversion centre (Z′ = 0.5). The ferrocene and benzyl substituents are in a transanti arrangement. The Pd—C bond distance between the N‐heterocyclic carbene ligands and the metal atom is 2.036 (7) Å. A survey of related structures shows that the lengthening of the N—C bonds and the closure of the N—C—N angle seen here on metal complexation is typical of similar NHCs and their complexes.  相似文献   

14.
Comprehensive studies on the coordination properties of tridentate nitrenium‐based ligands are presented. N‐heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of RhI, RhIII, Mo0, Ru0, RuII, PdII, PtII, PtIV, and AgI complexes based on these unusual ligands. Formation of nitrenium–metal bonds is unambiguously confirmed both in solution by selective 15N‐labeling experiments and in the solid state by X‐ray crystallography. The generality of N‐heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second‐row transition and post‐transition metals (Y–Cd) in terms of the corresponding bond‐dissociation energies.  相似文献   

15.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

16.
Neutral half‐sandwich organometallic ruthenium(II) complexes of the type [(η6‐cymene)RuCl2(L)] ( H1 – H10 ), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single‐crystal X‐ray diffraction confirming a piano‐stool geometry with η6 coordination of the arene ligand. Hydrogen bonding between the N? H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metal–ligand interaction. Complexes coordinated to a mercaptobenzothiazole framework ( H1 ) or mercaptobenzoxazole ( H6 ) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1‐phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non‐intercalative fashion and cause unwinding of plasmid DNA in a cell‐free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIα activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen‐bond donor on the heterocycle reduces the cytotoxicity.  相似文献   

17.
Ruthenium(II) Complexes containing pyrimidine‐2‐thiolate (pymS) and bis(diphenylphosphanyl)alkanes [Ph2P–(CH2)m–PPh2, m = 1, dppm; m = 2, dppe; m = 3, dppp; m = 4, dppb] are described. Reactions of [RuCl2L2] (L = dppm, dppp) and [Ru2Cl4L3] (L = dppb) with pyrimidine‐2‐thione (pymSH) in 1:2 molar ratio in dry benzene in the presence of Et3N base yielded the [Ru(pymS)2L] complexes (pymS = pyrimidine‐2‐thiolate; L = dppm ( 1 ); dppp ( 3 ); dppb ( 4 )). The complex [Ru(pymS)2(dppe)] ( 2 ) was indirectly prepared by the reaction of [Ru(pymS)2(PPh3)2] with dppe. These complexes were characterized using analytical data, IR, 1H, 13C, 31P NMR spectroscopy, and X‐ray crystallography (complex 3 ). The crystal structure of the analogous complex [Ru(pyS)2(dppm)] ( 5 ) with the ligand pyridine‐2‐thiolate (pyS) was also described. X‐ray crystallographic investigation of complex 3 has shown two four‐membered chelate rings (N, S donors) and one six‐membered ring (P, P donors) around the metal atom. Compound 5 provides the first example in which RuII has three four‐membered chelate rings: two made up by N, S donor ligands and one made up by P, P donor ligand. The arrangement around the metal atoms in each complex is distorted octahedral with cis:cis:trans:P, P:N, N:S, S dispositions of the donor atoms. The 31P NMR spectroscopic data revealed that the complexes are static in solution, except 2 , which showed the presence of more than one species.  相似文献   

18.
Sodium cyclopentadienide reacts as nucleophile with 4,7‐dibromo‐2,1,3‐benzothiadiazole (BTZ) and leads to the new donor‐functionalized ligand CpBTZ. Related quinoxalyl Cp systems have been prepared using Pd‐catalyzed coupling with zincated Cp‐metal complexes. The new ligands comprise two N‐donor atoms; one of them is located in a distal position relative to the metal centre so that it cannotcoordinate in a chelating manner. With CpBTZ ligand derivatives severalmetal complexes have been synthesized. The new chromium(III) complex CpBTZCrCl2 ( 12 ) becomes upon activation an active catalyst for the polymerization of ethylene. Relying on DFT calculations and analysis of spin‐density distribution combined with paramagnetic NMR data a chelating coordination of the CpBTZ ligand is feasible in 12 .  相似文献   

19.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

20.
A recently reported new class of ruthenium complexes containing 2,2′‐bipyridine and a dipyrrin ligand in the coordination sphere exhibit both strong metal‐to‐ligand charge‐transfer (MLCT) and π–π* transitions. Quantitative analysis of the resonance Raman scattering intensities and absorption spectra reveals only weak electronic interactions between these states despite direct coordination of the bipyridyl and dipyrrin ligands to the central ruthenium atom. On the basis of DFT calculations and time‐dependent DFT (TD‐DFT), we propose that the electronic excited states closely resemble “pure” MLCT and π–π* states. Resonance Raman intensity analysis demonstrates that a large amplitude transannular torsional motion provides a mechanism for relaxation on the π–π* excited‐state surface. We assert that this result is generally applicable to a range of dipyrrin complexes such as boron–dipyrrin and metallodipyrrin systems. Despite the large torsional distortion between the phenyl ring and the dipyrromethene plane, π–π* excitation extends out onto the phenyl ring which may have important consequences in solar‐energy‐conversion applications of ruthenium–dipyrrin complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号