首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Diglycidylether of bisphenol A (DGEBA) was cured with γ‐butyrolactone (γ‐BL) using different lanthanide triflates as catalysts. Fourier transform infrared spectroscopy was used to study the different evolutions of the four elemental processes that took place during curing with lanthanum and ytterbium triflates. The greatest differences among the lanthanides were in oxophilicity and Lewis acidity. Differences in the coordination ability of the metal to the monomers were shown and according to the Pearson theory, were related to their different characteristics. Differences in the reactivity of the systems were related to the differences in the Lewis acidity of the initiators. The evolution of the contraction during curing using different lanthanide triflates was monitored by thermomechanical analysis. All systems showed that contraction took place in two stages and that there was an intermediate region, associated with gelation, with no contraction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3782–3791, 2004  相似文献   

2.
New low curing temperature powder coatings obtained by copolymerization of epoxy resins with Meldrum acid (MA) initiated by erbium (III) trifluoromethanesulfonate have been formulated. Their mechanical and thermomechanical properties have been studied and compared with a commonly used industrial system (o-tolylbiguanide/epoxy resin) and with an already formulated epoxy powder coating homopolymerized by erbium trifluoromethanesulfonate. Systems containing low proportions of MA and initiated by erbium trifluoromethanesulfonate lead to a great reduction of curing conditions (temperature/time). Moreover, the new formulated systems present very good mechanical properties, adhesion, and impact resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2316–2327, 2007  相似文献   

3.
Scandium, ytterbium, and lanthanum triflates and boron trifluoride monoethylamine were used as cationic initiators to cure a mixture 2:1 (mol/mol) of diglycidylether of bisphenol A (DGEBA) and 7,7‐dimethyl‐6,8‐dioxaspiro[3.5]nonane‐5,9‐dione (MCB). The evolution of the epoxy and lactone during curing and the linear ester groups in the final materials were evaluated by Fourier Transform Infrared in the attenuated‐total‐reflection mode. The kinetic parameters of the curing process were calculated from DSC analysis applying isoconversional procedures. The shrinkage on curing and the thermal degradability of the materials on varying the initiator used were evaluated. The expandable character of MCB was confirmed. The materials obtained were more degradable than conventional epoxy resins due to the tertiary ester groups incorporated in the network by copolymerization. © 2008 Wiley Periodicals, Inc J Polym Sci Part A: Polym Chem 46: 1229–1239, 2008  相似文献   

4.
Solid bisphenol-A epoxy resin of medium molecular weight was cured using a Lewis acid initiator (erbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the degree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional E value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The “nucleation and growth” Avrami kinetic model A3/2 has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction having higher influence when low temperatures were applied.  相似文献   

5.
The thermal cationic curing of mixtures in different proportions of diglycidylether of bisphenol A (DGEBA) with γ-valerolactone (γ-VL) initiated by scandium, ytterbium and lanthanum triflates or a conventional BF3·MEA initiator was investigated. The non-isothermal differential scanning calorimetry (DSC) experiments at a controlled heating rate were used to evaluate the evolution of the reactive systems. BF3·MEA and rare earth metal triflates initiated curing systems follow a different evolution. Among rare earth metal triflates tested, the scandium was the most active initiator. The phenomenological changes that take place during curing were studied and represented in a time-temperature-transformation (TTT) diagram. Some characteristics of the materials were also evaluated.  相似文献   

6.
The thermal degradation of thermosetting materials prepared by cationic copolymerization of mixtures of different proportions of diglycidylether of bisphenol A (DGEBA) with 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione) (MCP) initiated by ytterbium or lanthanum triflate or using a conventional initiator, BF3·MEA was investigated. To study the thermal degradation, several techniques were used such as thermogravimetry (TGA), infrared spectroscopy (FTIR) and calorimetry (DSC) and the volatiles evolved during degradation were identified by mass spectrometry. The materials prepared possess the characteristics of thermally degradable thermosets, due to the presence of ester groups in the polymer chain, which are broken at the beginning of degradation. The degradability increased when lanthanide triflates were used in the curing, especially the ytterbium salt and when the proportion of MCP in the material increased.  相似文献   

7.
A new epoxy resin derived from Meldrum acid (DGMA) was synthesized by a two steps synthetic procedure and structurally characterized by the usual spectroscopic techniques and elemental analysis. Ytterbium and lanthanum triflates were tested as cationic initiators to cure this resin and its mixtures with diglycidylether of bisphenol A (DGEBA) in several proportions. By FTIR‐ATR spectroscopy the evolution of the groups, which participate in the curing was followed. The evolution of the curing and the Tg of the materials were studied by differential scanning calorimetry and the kinetic parameters were calculated applying isoconversional procedures. Ytterbium triflate led to a quicker curing than lanthanum. The thermal stability of the materials obtained was evaluated by thermogravimetry and the higher thermal degradability of the materials containing DGMA was confirmed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3088–3097, 2008  相似文献   

8.
In this study, the authors study by calorimetry the influence of hyperbranched polyester Boltron®H40 on the thermal curing and the photocuring of a diglycidyl ether of bisphenol epoxy resin (DGEBA) using ytterbium (III) trifluoromethanesulfonate and triarylsulfonium hexafluorantimonate as thermal and photo cationic initiators, respectively. In the dynamic thermal curing at different heating rates, the authors have seen a decelerating effect when H40 is added to DGEBA, the system with 10% of H40 being the slowest. An isoconversional method has been used to determine the apparent activation energy of the thermal curing. In the isothermal photocuring at low temperatures, the authors have also appreciated a decelerating effect on adding H40, obtaining a minimum conversion when the H40 proportion is 15%. However, at high temperatures, the photocuring process can be accelerated at the first part of this process. This behavior is a consequence of the temperature dependence of H40 solubility in DGEBA, the viscosity of the system, and the hydroxyl-induced chain-transfer reaction. The values found of the maximum glass transition temperature in the thermal curing and in the photocuring, show that H40 is not completely solubilized in the reacted system.  相似文献   

9.
Mixtures of the diglycidylether of bisphenol A (DGEBA) and phthalide (PT) or 3,3′‐diphthalide (DPT) were cured using ytterbium or lanthanum triflate as catalyst. The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and quantify the evolution of the epoxide and lactone groups. The Tg of the crosslinked materials increased when the proportion of lactone in the curing mixture decreased. The kinetics was studied with DSC experiments and isoconversional procedures. The differences in the reactivity of the systems were related to the Lewis acidity of the lanthanide salt used as initiator. The increase in the proportion of lactone leads to an increase in the reaction rate. The shrinkage was determined from the densities before and after curing and its evolution was studied by thermomechanical analysis. The materials obtained were characterized by thermogravimetry and dynamic mechanical thermal analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1711–1721, 2006  相似文献   

10.
The thermal degradation of the epoxy system diglycidyl ether of bisphenol A (DGEBA n=0) and m-xylylenediamine (mXDA) containing different concentrations of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles was studied by thermogravimetric analysis in order to determine the influence of both, the POSS concentration and the curing cycle on the degradation process and to compare it with the results for the non modified system. Glass transition temperatures for the same systems were also determined by differential scanning calorimetry. Different behaviors have been observed, depending on the POSS concentration and on the curing selection.  相似文献   

11.
Ytterbium and lanthanum triflates were used as cationic initiators to cure mixtures of diglycidylether of bisphenol A (DGEBA) and Meldrum acid (MA) in several proportions of comonomers and initiators. The evolution of epoxy and lactone groups during curing, and of linear ester formed in the final materials were evaluated by Fourier transform infrared in the attenuated-total-reflection mode (FTIR/ATR).

The global evolution of the curing process was investigated by calorimetric analysis and the activation energy was calculated by isoconversional procedures.

Shrinkage on curing and thermal degradability of the final materials on varying the initiator and the proportion of Meldrum acid in the mixtures were evaluated. The expandable character of MA was confirmed. The materials obtained were more degradable than conventional epoxy resins due to the tertiary ester groups incorporated into the network by copolymerization, especially those obtained with ytterbium triflate. On increasing the proportion of initiator the degradability was also increased.  相似文献   


12.

In the present study, TEIA bioresin was blended with the diglycidyl ether bisphenol A (DGEBA) epoxy resin in different ratios (i.e. 10, 20, 30, 40 mass%), cured with methylhexahydrophthalic anhydride curing agent in the presence of 2-methylimidazole catalyst. The optimized composition of DGEBA and TEIA bioresin blends system was employed as an adhesive strength. The adhesive strength of the TEIA-modified DGEBA epoxy resin blend system was increased from 4.14 to 6.31 MPa on an aluminium substrate compared to the DGEBA epoxy resin. The curing kinetics of non-isothermal, DGEBA epoxy resin and its bio-based blend systems were investigated employing differential scanning calorimetry. An increase in the peak temperature and reduction in a heat of curing as well as activation energy in DGEBA epoxy resin were observed with the addition of TEIA bioresin content. The activation energy (Ea) of the DGEBA resin and their bio-based blend system were obtained from Kissinger and Flynn–Wall–Ozawa methods.

  相似文献   

13.
Solid bisphenol-A epoxy resin of medium molecular mass was cured using a Lewis acid initiator (ytterbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the degree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (free model), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The growth-of-nuclei Avrami kinetic model A3/2 has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction especially when 2 phr was added. 0.5 and 1 phr showed very few kinetic differences between them.  相似文献   

14.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

15.
Novel curing systems of a urethane/epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] alloy using the moisture‐latent hardener ketimine (K‐systems) were investigated on the DGEBA‐rich side and were compared with aromatic diamine curing systems (A‐systems). Almost all the added DGEBA was separated from the polyurethane matrix and dispersed as 2–10‐μm‐diameter particles after curing in the A‐systems. Therefore, DGEBA did not act as a reinforcing agent for the polyurethane matrix. However, 50% of the added DGEBA was dispersed as particles with a diameter of 1–4 μm, and the other 50% was incorporated into the polyurethane matrix in the novel K‐systems. Therefore, the polyurethane matrix in the K‐systems should be reinforced effectively by both incorporated and finely dispersed DGEBA and should result in significant improvements in the stress–strain properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1137–1144, 2004  相似文献   

16.
We synthesized a novel phosphorus‐containing triamine [9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐yl‐tris(4‐aminophenyl) methane (dopo‐ta)] from the nucleophilic addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and pararosaniline chloride, using triethylamine as an acid receiver. We confirmed the structure of dopo‐ta by IR, mass, and NMR spectra and elemental analysis. dopo‐ta served as a curing agent for diglycidyl ether of bisphenol A (DGEBA) and dicyclopentadiene epoxy (hp7200). Properties such as the glass‐transition temperature (Tg), thermal decomposition temperature, flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The Tg's of cured DGEBA/dopo‐ta and hp7200/dopo‐ta were 171 and 190 °C, respectively. This high Tg phenomenon is rarely seen in the literature after the introduction of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.80 wt % for DGEBA/dopo‐ta/diamino diphenylmethane (DDM) systems and 1.46 wt % for hp7200/dopo‐ta/DDM systems. The dielectric constants for DGEBA/dopo‐ta and hp7200/dopo‐ta were 2.91 and 2.82, respectively, implying that the dopo‐ta curing systems exhibited low dielectric properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5971–5986, 2005  相似文献   

17.
This study investigates the curing of epoxidized soybean oil (ESO) using dicyandiamide (DICY) and combinations of DICY with several accelerators as curing agents. The differential scanning calorimetry (DSC) results indicated that carbonyldiimidazole (CDI) is a highly efficient accelerator for the ESO‐DICY curing system. CDI accelerated ESO‐DICY curing system can gel within a short period of 13 min at 190 °C. The activation energies of the ESO‐DICY curing systems with and without CDI are 95 and 121 kJ mol?1, respectively. Similar acceleration effect was observed in the ESO‐diglycidyl ether of biphenyl A (DGEBA) blending formulations. When the molar part of the glycidyl epoxy groups of DGEBA was equal to the internal epoxy groups of ESO in the mixture, gelation of the DICY curing system accelerated by CDI was achieved in 3 min at 160 °C. Furthermore, the DSC results with FTIR analysis suggest that the stoichiometric curing molar ratio was 3 ESO epoxy units per 1 DICY molecule. Two epoxy units reacted with DICY to give secondary alcohols, while the other one linked to the nitrile group. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 375–382  相似文献   

18.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

19.
Nanocomposites from nanoscale silica particles(NS),diglycidylether of bisphenol-A based epoxy(DGEBA),and 3,5-diamino-N-(4-(quinolin-8-yloxy) phenyl) benzamide(DQPB) as curing agent were obtained from direct blending of these materials.The effect of nanosilica(NS) particles as catalyst on the cure reaction of DGEBA/DQPB system was studied by using non-isothermal DSC technique.The activation energy(E_a) was obtained by using Kissinger and Ozawa equations. The E_a value of curing of DGEBA/DQPB/10%NS system showed a decrease of about 10 kJ/mol indicating the catalytic effect of NS particles on the cure reaction.The E_a values of thermal degradation of the cured samples of both systems were 148 kJ/mol and 160 kJ/mol,respectively.The addition of 10%of NS to the curing mixture did not have much effect on the initial decomposition temperature(T_i) but increased the char residues from 20%to 28%at 650℃.  相似文献   

20.
Phosphorus‐containing epoxy systems were prepared from isobutylbis(hydroxypropyl)phosphine oxide (IHPO) and diglycidyl ether of bisphenol A (DGEBA). Diethyl‐N,N‐bis(2‐hydroxyethyl) aminomethyl phosphonate (Fyrol 6) could not be incorporated into the epoxy backbone by a reaction with either epichlorohydrin or DGEBA because intramolecular cyclization took place. The curing behavior of the IHPO–DGEBA prepolymer with two primary amines was studied, and materials with moderate glass‐transition temperatures were obtained. V‐0 materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3510–3515, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号