首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In the title cocrystal, 4‐amino‐N‐(4,6‐dimethylpyrimidin‐2‐yl)benzenesulfonamide–4‐amino‐N‐(4,6‐dimethyl‐1,2‐dihydropyrimidin‐2‐ylidene)benzenesulfonamide–1,3‐dimethyl‐7H‐purine‐2,6‐dione (1/1/1), C7H8N4O2·2C12H14N4O2S, two sulfamethazine molecules cocrystallize with a single molecule of theophylline. Each molecule of sulfamethazine forms a hydrogen‐bonded ribbon along the b axis crosslinked by further hydrogen bonding. The two sulfamethazine molecules exhibit a hydrogen‐shift isomerization so that the crystal structure contains both tautomeric forms. Calculation of their relative energies showed that the tautomer protonated at the chain N atom is considerably more stable than the one where an N atom in the aromatic ring is protonated. The latter, here observed for the first time, is stabilized through strong intermolecular interactions with the theophylline molecules.  相似文献   

2.
The X‐ray crystal structures of solvates of sulfapyridine have been determined to be conformational polymorphs. 4‐Amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide (polymorph III), C11H11N3O2S, (1), 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide 1,3‐dioxane monosolvate, C11H11N3O2S·C4H8O2, (2), and 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide tetrahydrofuran monosolvate, C11H11N3O2S·C4H8O, (3), crystallized as the imide form, while piperidin‐1‐ium 4‐amino‐N‐(pyridin‐2‐yl)benzenesulfonamidate, C5H12N+·C11H10N3O2S, (4), crystallized as the piperidinium salt. The tetrahydrofuran and dioxane solvent molecules in their respective structures were disordered and were refined using a disorder model. Three‐dimensional hydrogen‐bonding networks exist in all structures between at least one sulfone O atom and the aniline N atom.  相似文献   

3.
The ability of the antibacterial agent sulfameter (SMT) to form solvates is investigated. The X‐ray crystal structures of sulfameter solvates have been determined to be conformational polymorphs. Both 1,4‐dioxane and tetrahydrofuran form solvates with sulfameter in a 1:1 molar ratio. 4‐Amino‐N‐(5‐methoxypyrimidin‐2‐yl)benzenesulfonamide (polymorph III), C11H12N4O3S, (1), has two molecules of sulfameter in the asymmetric unit cell. 4‐Amino‐N‐(5‐methoxypyrimidin‐2‐yl)benzenesulfonamide 1,4‐dioxane monosolvate, C11H12N4O3S·C4H8O2, (2), and 4‐amino‐N‐(5‐methoxypyrimidin‐2‐yl)benzenesulfonamide tetrahydrofuran monosolvate, C11H12N4O3S·C4H8O, (3), crystallize in the imide form. Hirshfeld surface analyses and fingerprint analyses were performed to study the nature of the interactions and their quantitative contributions towards the crystal packing. Finally, Hirshfeld surfaces, fingerprint plots and structural overlays were employed for a comparison of the two independent molecules in the asymmetric unit of (1), and also for a comparison of (2) and (3) in the monoclinic crystal system. A three‐dimensional hydrogen‐bonding network exists in all three structures, involving one of the sulfone O atoms and the aniline N atom. All three structures are stabilized by strong intermolecular N—H...N interactions. The tetrahydrofuran solvent molecule also takes part in forming significant intermolecular C—H...O interactions in the crystal structure of (3), contributing to the stability of the crystal packing.  相似文献   

4.
In each of ethyl N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinate, C16H19N5O3, (I), N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinamide, C14H16N6O2, (II), and ethyl 3‐amino‐N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}glycinate, C16H19N5O3, (IV), ethyl 3‐amino‐N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}propionate, C18H23N5O3, (V), and ethyl 3‐amino‐N‐[2‐amino‐5‐formyl‐6‐(piperidin‐4‐yl)pyrimidin‐4‐yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)–(VI) provide evidence for significant polarization of the electronic structure. The molecules of (I) are linked by paired N—H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N—H...N and N—H...O hydrogen bonds into a chain of edge‐fused rings. In the structure of (IV), molecules are linked into sheets by means of two hydrogen bonds, both of N—H...O type, in the structure of (V) by three hydrogen bonds, two of N—H...N type and one of C—H...O type, and in the structure of (VI) by four hydrogen bonds, all of N—H...O type. Molecules of (II) are linked into a three‐dimensional framework structure by a combination of three N—H...O hydrogen bonds and one C—H...O hydrogen bond.  相似文献   

5.
6.
In the title compound, poly[[triaqua{μ4‐2‐[4,6‐bis(carboxymethylsulfanyl)‐1,3,5‐triazin‐2‐ylsulfanyl]acetato}{μ2‐2‐[4,6‐bis(carboxymethylsulfanyl)‐1,3,5‐triazin‐2‐ylsulfanyl]acetato}barium(II)] monohydrate], {[Ba(C9H8N3O6S3)2(H2O)3]·H2O}n, each BaII atom is nine‐coordinated by six O atoms from carboxylate groups of four different 2‐[4,6‐bis(carboxymethylsulfanyl)‐1,3,5‐triazin‐2‐ylsulfanyl]acetate ligands and three O atoms from water molecules. The triazine ligand is partially deprotonated, as verified by intermolecular hydrogen‐bonding parameters, and adopts μ2‐η11 and μ4‐η112 coordination modes to connect the BaII centres, forming a novel double‐layered structure. Topological analysis indicates that the whole structure is a novel (4,6)‐connected net, considering the ligands and BaII centres as four‐ and six‐connected nodes, respectively.  相似文献   

7.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

8.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

9.
In each of 6‐amino‐3‐methyl‐2‐(morpholin‐4‐yl)‐5‐nitrosopyrimidin‐4(3H)‐one, C9H13N5O3, (I), morpholin‐4‐ium 4‐amino‐2‐(morpholin‐4‐yl)‐5‐nitroso‐6‐oxo‐1,6‐dihydropyrimidin‐1‐ide, C4H10NO+·C8H10N5O3, (II), and 6‐amino‐2‐(morpholin‐4‐yl)‐5‐nitrosopyrimidin‐4(3H)‐one hemihydrate, C8H11N5O3·0.5H2O, (III), the bond distances within the pyrimidine components are consistent with significant electronic polarization, which is most marked in (II) and least marked in (I). Despite the high level of substitution, the pyrimidine rings are all effectively planar, and in each of the pyrimidine components, there are intramolecular N—H...O hydrogen bonds. In each compound, the organic components are linked by multiple N—H...O hydrogen bonds to form sheets of widely differing construction, and in compound (III) adjacent sheets are linked by the water molecules, so forming a three‐dimensional hydrogen‐bonded framework. This study also contains the first direct geometric comparison between the electronic polarization in a neutral aminonitrosopyrimidine and that in its ring‐deprotonated conjugate anion in a metal‐free environment.  相似文献   

10.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

11.
The synthesis and characterization of two new 1,3,5‐triazines containing 2‐(aminomethyl)‐1H‐benzimidazole hydrochloride as a substituent are reported, namely, 2‐{[(4,6‐dichloro‐1,3,5‐triazin‐2‐yl)amino]methyl}‐1H‐benzimidazol‐3‐ium chloride, C11H9Cl2N6+·Cl? ( 1 ), and bis(2,2′‐{[(6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(azanediyl)]bis(methylene)}bis(1H‐benzimidazol‐3‐ium)) tetrachloride heptahydrate, 2C19H18ClN92+·4Cl?·7H2O ( 2 ). Both salts were characterized using single‐crystal X‐ray diffraction analysis and IR spectroscopy. Moreover, the NMR (1H and 13C) spectra of 1 were obtained. Salts 1 and 2 have triclinic symmetry (space group P) and their supramolecular structures are stabilized by hydrogen bonding and offset π–π interactions. In hydrated salt 2 , the noncovalent interactions yield pseudo‐nanotubes filled with chloride anions and water molecules, which were modelled in the refinement with substitutional and positional disorder.  相似文献   

12.
In the title compound, 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium maleate monohydrate, C3H7N6+·C4H3O4·H2O, containing singly protonated melaminium residues, maleate(1−) anions and water mol­ecules, the components are linked by hydrogen bonds into a three‐dimensional framework structure. The melaminium residues are connected by two pairs of N—H⋯N hydrogen bonds into chains in the form of stacks, with a distance of 3.26 (1) Å between the triazine rings, clearly indicating π–π interactions. The maleate anion contains an intramolecular O—H⋯O hydrogen bond and the anions interact with the water mol­ecules via O—H⋯O hydrogen bonds, forming zigzag chains, also in the form of stacks, in which the almost‐planar maleate anions are separated by 3.26 (1) Å. The experimental geometries of the ions are compared with molecular‐orbital calculations of their gas‐phase geometries.  相似文献   

13.
Crystals of 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium levulinate (4‐oxo­pentanoate) monohydrate, C3H7N6+·C5H7O3·H2O, are formed via self‐assembled hydrogen bonding by cocrystallization of mel­amine and levulinic acid. Two N—H⋯N hydrogen bonds and four N—H⋯O hydrogen bonds connect two melaminium entities such that each of two pairs of N—H⋯O bonds bridges two H atoms belonging to the amine groups of two different melaminium cations via the carbonyl O atom of one levulinate mol­ecule.  相似文献   

14.
In two dibenzodiazepinones, viz. the tricyclic core structure, 5H‐dibenzo[b,e]diazepin‐11(10H)‐one, C13H10N2O, and an acylated derivative, 1‐(11‐hydroxy‐5H‐dibenzo[b,e]diazepin‐5‐yl)‐2‐{4‐[3‐(1H‐imidazol‐1‐yl)propyl]piperidin‐1‐yl}ethanone ethanol monosolvate, C26H29N5O2·C2H5OH, dimeric association via hydrogen‐bond bridging between the cyclic amide entities is evident, but there are considerable differences between the parent compound and the amidated derivative. Highly consistent with reported structures of related tricyclic lactams, two molecules of the nonsubstituted compound are bridged through two N—H...O hydrogen bonds across a crystallographic centre of symmetry and the bond lengths of the cyclic amide entity correspond to the amino–oxo (lactam) tautomeric form. In contrast, the structure of the derivative shows two similar, but crystallographically unique, molecules hydrogen bonded into a dimeric unit exhibiting an approximate (noncrystallographic) C2 axis. The bond lengths of the two derivative cyclic amide groups support their potential presence in the hydroxyimine (lactim) tautomeric forms, with the resulting possibility of intermolecular tautomerism. Likely driving forces for the two extreme configurations are discussed.  相似文献   

15.
In O‐ethyl N‐benzoylthiocarbamate, C10H11NO2S, the molecules are linked into sheets by a combination of two‐centre N—H...O and C—H...S hydrogen bonds and a three‐centre C—H...(O,S) hydrogen bond. A combination of two‐centre N—H...O and C—H...O hydrogen bonds links the molecules of O‐ethyl N‐(4‐methylbenzoyl)thiocarbamate, C11H13NO2S, into chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. In O,S‐diethyl N‐(4‐methylbenzoyl)imidothiocarbonate, C13H17NO2S, pairs of molecules are linked into centrosymmetric dimers by pairs of symmetry‐related C—H...π(arene) hydrogen bonds, while the molecules of O,S‐diethyl N‐(4‐chlorobenzoyl)imidothiocarbonate, C12H14ClNO2S, are linked by a single C—H...O hydrogen bond into simple chains, pairs of which are linked by an aromatic π–π stacking interaction to form a ladder‐type structure.  相似文献   

16.
Doubly and triply hydrogen‐bonded supramolecular synthons are of particular interest for the rational design of crystal and cocrystal structures in crystal engineering since they show a high robustness due to their high stability and good reliability. The compound 5‐methyl‐2‐thiouracil (2‐thiothymine) contains an ADA hydrogen‐bonding site (A = acceptor and D = donor) if the S atom is considered as an acceptor. We report herein the results of cocrystallization experiments with the coformers 2,4‐diaminopyrimidine, 2,4‐diamino‐6‐phenyl‐1,3,5‐triazine, 6‐amino‐3H‐isocytosine and melamine, which contain complementary DAD hydrogen‐bonding sites and, therefore, should be capable of forming a mixed ADADAD N—H…S/N—H…N/N—H…O synthon (denoted synthon 3sN·S;N·N;N·O), consisting of three different hydrogen bonds with 5‐methyl‐2‐thiouracil. The experiments yielded one cocrystal and five solvated cocrystals, namely 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/2), C5H6N2OS·2C4H6N4, (I), 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C4H6N4·C3H7NO, (II), 5‐methyl‐2‐thiouracil–2,4‐diamino‐6‐phenyl‐1,3,5‐triazine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C9H9N5·C3H7NO, (III), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (2/2/1), (IV), 2C5H6N2OS·2C4H6N4O·C3H7NO, (IV), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylacetamide (2/2/1), 2C5H6N2OS·2C4H6N4O·C4H9NO, (V), and 5‐methyl‐2‐thiouracil–melamine (3/2), 3C5H6N2OS·2C3H6N6, (VI). Synthon 3sN·S;N·N;N·O was formed in three structures in which two‐dimensional hydrogen‐bonded networks are observed, while doubly hydrogen‐bonded interactions were formed instead in the remaining three cocrystals whereby three‐dimensional networks are preferred. As desired, the S atoms are involved in hydrogen‐bonding interactions in all six structures, thus illustrating the ability of sulfur to act as a hydrogen‐bond acceptor and, therefore, its value for application in crystal engineering.  相似文献   

17.
The molecules of N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐methoxybenzyl)acetamide, C23H26ClN3O2, are linked into a chain of edge‐fused centrosymmetric rings by a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond. In N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐chlorobenzyl)acetamide, C22H23Cl2N3O, a combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds, which utilize different aryl rings as the acceptors, link the molecules into sheets. The molecules of S‐[N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐N‐(4‐methylbenzyl)carbamoyl]methyl O‐ethyl carbonodithioate, C26H31N3O2S2, are also linked into sheets, now by a combination of two C—H...O hydrogen bonds, both of which utilize the amide O atom as the acceptor, and two C—H...π(arene) hydrogen bonds, which utilize different aryl groups as the acceptors.  相似文献   

18.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

19.
The structures of 2‐[N‐(2‐chlorophenyl)carbamoyl]benzenesulfonamide and 2‐[N‐(4‐chlorophenyl)carbamoyl]benzenesulfonamide, both C13H11ClN2O3S, are stabilized by extensive intra‐ and intermolecular hydrogen bonds. In both structures, sulfonamide groups are hydrogen bonded via the N and O atoms and form chains of molecules. The carbamoyl groups are also hydrogen bonded, involving the O and N atoms, further strengthening the polymeric chains running along the c and a axes in the 2‐ and 4‐chloro derivatives, respectively. Carbamoylsulfonamide derivatives are novel compounds with a great potential for medicinal applications.  相似文献   

20.
In 2‐amino‐4,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, the mol­ecules are linked by one N—H⋯N and one N—H⋯O hydrogen bond to form sheets built from alternating R(8) and R(32) rings. In isomeric 4‐amino‐2,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, which crystallizes with Z′ = 2 in P, the two independent mol­ecules are linked into a dimer by two independent N—H⋯N hydrogen bonds. These dimers are linked into sheets by a combination of two‐centre C—H⋯O and three‐centre C—H⋯(O)2 hydrogen bonds, and the sheets are further linked by two independent aromatic π–π‐stacking interactions to form a three‐dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号