首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
孙秀兰  高博  张银志 《分析化学》2012,(7):1086-1091
采用原位合成法制得聚苯胺修饰纳米金的复合膜,并采用紫外、红外及透射电镜对其进行表征,以离子液体1,3-二丁基-咪唑六氟磷酸盐为保护复合膜的溶剂,成功制得离子液体保护的聚苯胺纳米金复合膜免疫传感器,并应用于乳品中金黄色葡萄球菌肠毒素B(SEB)的检测。在Fe(CN)63-/4-溶液中,采用循环伏安法(CV)及交流阻抗法(EIS)对传感器进行表征与测定,建立了SEB检测标准曲线,Y=933.46x+1399.8,线性范围为0.1~8.0μg/L,相关系数R2=0.9932,检出限明显降低(0.033μg/L,S/N=3)。结果表明,本传感器特异性良好,乳品检测回收率在88%~119%之间,稳定性好,可应用于乳品中的SEB快速检测。  相似文献   

2.
采用商品化丝网印刷碳纳米管电极(CNTSPE),并利用层层组装技术将乙酰胆碱酯酶(AChE)、聚二烯丙基二甲基氯化铵(PDDA)逐层依次修饰于CNTSPE表面,制备了PDDA/AChE/PDDA/AChE/PDDA修饰的CNTSPE传感器(PDDA/(AChE/PDDA)_2/CNTSPE),并以对氧磷、毒死蜱为研究模型,考察了该电化学传感器的性能并建立了对氧磷、毒死蜱的电化学传感检测方法。结果表明,电极对氧磷、毒死蜱两种农药的线性响应范围分别为50~150 ng/mL,20~150 ng/mL,检测限分别为20 ng/mL,10 ng/mL。该传感器应用于实际样品中目标农药的检测,回收率在87. 5%~90. 6%之间。  相似文献   

3.
本文采用石墨烯(GS)-壳聚糖(CS)-纳米金(Nano-Au)复合材料修饰玻碳电极,构建性能良好的生物识别界面,制备一种无标记的电流型免疫传感器,并应用于1-芘丁酸(PBA)的高灵敏检测。研究结果表明,GS、CS和Nano-Au的协同作用,极大地提高了anti-PAHs抗体在电极表面的覆盖量,从而提高了免疫传感器的灵敏度和检测性能。采用示差脉冲伏安法(DPV)对PBA进行检测,PBA在0.001~10ng/mL和10~200ng/mL浓度范围内与峰电流值呈良好的线性关系,检出限为0.001ng/mL。该传感器应用于实际水样中痕量PBA的检测,加标回收率为90%~105%。  相似文献   

4.
在金电极表面电沉积银为氧化还原探针,利用有机多孔材料(PTC-NH2)、纳米金(nano-Au)固载甲胎蛋白抗体(anti-AFP),制备出用于检测甲胎蛋白(AFP)的安培型免疫传感器。通过交流阻抗技术、循环伏安法研究了电极的电化学特性,考察了孵育时间、测试液pH值等实验条件对传感器性能的影响,并利用扫描电子显微镜(SEM)对电极的修饰过程进行了表征。该传感器对AFP有良好的电流响应,线性范围分别为1.0~20.0ng/mL和20.0~60.0 ng/mL,检测限为0.6 ng/mL。  相似文献   

5.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记阻抗型免疫传感器的制备及应用,基于石墨烯、纳米金在玻碳电极表面组装制备传感器,通过循环伏安法、交流阻抗法对制备的传感器进行表征。在优化的实验条件下,该免疫传感器的阻抗值随着检测溶液中癌胚抗原(CEA)浓度的增大而增大,并在0.1~85 ng/mL CEA范围内呈线性关系,回归方程为△Ret=1605.55+39.26ρ;检测限为0.04 ng/mL(R=0.9992)。该免疫传感器可用于临床上对CEA的检测。  相似文献   

6.
贾翠娟  王丽娟  杜璋璋 《化学通报》2012,(11):1048-1051
在玻碳电极上电沉积石墨烯/壳聚糖/碳纳米管复合膜,通过戊二醛连接抗体,建立了新型电流型甲胎蛋白传感器,通过循环伏安法和交流阻抗考察了其电化学特性。在优化的实验条件下,传感器的峰电流随着检测溶液中甲胎蛋白(AFP)浓度的增大而增大,并在0.05~100ng/mL浓度范围内呈现线性关系,回归方程为△I=0.51c+0.68(ng/mL);检测限为0.02ng/mL(R=0.9990)。该免疫传感器具有制作简单、灵敏度较高、重现性好、线性范围宽等优点,可用于临床上对AFP的检测。  相似文献   

7.
利用旋蒸法和挤压法制备脂质体,通过脂质体包埋亚铁氰化钾,利用戊二醛交联2,4-二氯苯氧乙酸(2,4-D)兔抗制成免疫脂质体,制备快速检测血液中2,4-D的夹心型免疫传感器.实验结果表明:2,4-D在75 ng/mL~50 μg/mL浓度范围内呈现良好的线性关系,检测下限达到了36.42 ng/mL.该免疫传感器选择性强...  相似文献   

8.
构建了以卟啉多孔化合物-金纳米颗粒(Au NPs@PAF)为固定基质的无标记型C-反应蛋白(CRP)光电免疫传感器。在最优条件下,采用计时电流法实现了对CRP的定量检测。该传感器在CRP质量浓度0.05~60 ng/mL范围内与光电流有较好的线性关系,检出限为0.017 ng/mL,相关系数为0.994 6,平均回收率为102%,具有良好的选择性,为C-反应蛋白的检测提供了一种灵敏的方法。  相似文献   

9.
研究了在玻碳电极利用巯基乙胺固定纳米金、然后纳米金固载癌胚抗体(Ab1),采用脂质体包裹电子媒介体硫堇,脂质体周围联接标记辣根过氧化物酶(HRP)的癌胚抗体(Ab2)对其传感器进行信号放大,通过循环伏安法考察了该免疫传感器的电化学特性,在优化的实验条件下,该免疫传感器的峰电流随着检测溶液中癌胚抗原(CEA)浓度的增大而增大,并在0.05~200 ng/mL CEA范围内呈现线性关系,回归方程为:Δi=0.20+0.24ρ(ng/mL);检测限为:18pg/mL(R=0.9947)。该免疫传感器可用于临床上对CEA的检测。  相似文献   

10.
方凯  郜毓堃  杨丽敏  姜磊 《化学通报》2021,84(6):563-570
生物传感检测血清中的细菌内毒素具有重要的应用价值,但其开发过程受到血清所含物质复杂性的限制。本文开发了一种基于磁珠-纳米金-适配体(MB-AuNPs-APT)的生物探针比色传感器。通过生物探针捕获内毒素来影响其过氧化物酶活性,进而影响H_2O_2催化3,3′,5,5′-四甲基联苯胺(TMB)产生氧化TMB的量,最终达到比色分析内毒素的目的。分析了该方法对血清中内毒素检测的可行性,结果表明,基于MB-AuNPs-APT生物探针比色传感法的检测限为0.402ng/mL,线性范围为0.1~100 ng/mL。在50%血清样品中此生物传感器检测内毒素的回收率为99.59%~112.00%,展示了该生物探针在血清中检测内毒素的可靠性。  相似文献   

11.
磁弹性无线传感器检测不同液体介质中的金黄色葡萄球菌   总被引:1,自引:0,他引:1  
研制了磁弹性金黄色葡萄球菌无线传感器,用于检测不同液体介质中的金黄色葡萄球菌。取0.2mL一定浓度菌液加到含2mL无菌液体介质的检测玻璃管中,磁弹性传感器共振频率随细菌的生长而改变。通过改变牛肉膏和蛋白胨的浓度,得出传感器在含有2×105cells/mL金黄色葡萄球菌的培养基CM2-2中共振频率响应最大。结果表明,此传感器可以测定的金黄色葡萄球菌浓度范围在CM2-2中是3×103~2×107cells/mL,在牛奶中是1×104~2×107cells/mL,检出限分别是1×103cells/mL和1×104cells/mL。传感器共振频移大小与金黄色葡萄球菌的浓度呈线性相关关系,相关系数在牛奶中是0.98,在培养基中是0.99。  相似文献   

12.
Zhang X  Liu F  Yan R  Xue P  Li Y  Chen L  Song C  Liu C  Jin B  Zhang Z  Yang K 《Talanta》2011,85(2):1070-1074
Staphylococcal enterotoxin B (SEB) is a potent gastrointestinal toxin and is heat resistant. SEB is also a potential bioterrorism agent. The ability to measure accurately very low amounts of staphylococcal enterotoxin B in food and other samples is very important. A highly sensitive and stable sandwich fluorescence immunoassay based on a pair of monoclonal antibodies against SEB which were produced by us was developed. Classical sandwich immunoassay was adopted and the glass slides were used as the base of the immunologic reaction. The functionalized fluorescent core-shell silica nanoparticles were used as labels. The fluorescence issued from the labels was detected by a laser-induced fluorescence millimeter sensor array detection platform. The fluorescence intensity has a linear relationship with the amount of SEB in the range of 50 pg/mL-5 ng/mL, and the detection limit of SEB was 20 pg/mL (the absolute detection limit was 0.02 pg). The relative standard deviation (RSD) for 5 parallel measurements of SEB (1 ng/mL) was 9.2%.  相似文献   

13.
Nanowire field effect transistors (nano-FET) were lithographically fabricated using 50 nm doped polysilicon nanowires attached to two small gold terminals separated from each other by a approximately 150 nm gap to serve as the basis for electronic detection of bacteria toxins. The device characterizations, semiconducting properties and use in a robust and sensitive bio-molecular detection sensor of bacterial toxins were reported in this work. The device characteristics were demonstrated with varying gate and drain voltages. The bio-molecular detection was demonstrated using electrochemical impedance spectroscopy (EIS), using Staphylococcus aureus Enterotoxin B (SEB) as the target molecule. The detection limit of SEB was observed in the range of 10-35 fM.  相似文献   

14.
A capacitive biosensor for detection of staphylococcal enterotoxin B   总被引:1,自引:0,他引:1  
A sensitive method for the detection of staphylococcal enterotoxin B (SEB) using a flow-injection capacitive biosensor is presented. SEB was purified from a crude culture filtrate of Staphylococcus aureus through three chromatographic steps. The first two steps were based on ion-exchange chromatography, and the last step was carried out on a gel filtration column. The SEB recovery values after the purification stages were 88%, 74%, and 12%, respectively. A horseradish peroxidase labeled antistaphylococcal enterotoxin B was prepared by the periodate method and was further employed in a sandwich-enzyme-linked immunosorbent assay (ELISA) for the determination of SEB concentrations in different samples obtained during the processing of the crude filtrate. The capacitive biosensor could detect SEB concentrations as low as 0.3 pg ml−1 with a linearity ranging from 2.8 pg ml−1 to 2.8 ng ml−1 under optimized conditions. The response time was about 10 min. A good agreement was achieved between the developed capacitive biosensor system and ELISA as a reference method for detection of SEB levels in different purification samples. The newly developed sensor has the benefits of simplicity, high sensitivity, and multiple use capability.  相似文献   

15.
《Analytical letters》2012,45(2-3):283-295
We fabricated a two-dimensional (2D) molecularly imprinted sol-gel thin film-coated quartz crystal microbalance (QCM) for the rapid detection of staphylococcal enterotoxin B (SEB) by combining organosilanes and the template protein SEB on the surface of piezoelectric quartz crystal (PQC) Au-electrode by in-situ immobilization. The detection process was monitored by the QCM's frequency shift (Δf). The working range of this method was 1.0 × 10?1–1.0 × 103 µg/mL. The detection limit was 6.1 ng/mL, which was lower than that of the PQC immunosensor, and the detection period was within 0.5 h. The reproducibility of the imprinted film-coated QCM was satisfactory due to no significant statistical difference (P > 0.05) in the rapid detection of SEB between intra- and inter-batch. The selectivity of the imprinted sol-gel film showed that it could discriminate the template molecule from its analogues and other guest molecules. Compared with immunochip, the imprinted film-coated QCM is more advantageous in terms of simplicity, rapidity, low cost, and sensitivity. Moreover, in real sample analysis, the recoveries of this method were 89.4–106.63%, which can be considered a favorable and applicable method for the rapid determination of SEB in real samples.  相似文献   

16.
In this paper, a method of simultaneous immunizing BALB/c mice with staphylococcal enterotoxin (SE) A and B (SEA and SEB) to prepare a monoclonal antibody (3F2) for detecting both of SEA and SEB was developed. The results showed that antibody 3F2 had high titers against both SEA and SEB by enzyme-linked immunosorbent assay (ELISA). The sensitivities of 3F2 to SEA and SEB detected by ELISA were 133.2 and 82.5 ng/mL, respectively, and the detection limits for the two enterotoxins were about 1 ng/mL. The antibody 3F2 had high specificities and affinities to both SEA and SEB, and had no cross-reaction with SEC1, bovine serum albumin, and ovalbumin. SEs-free skimmed milk samples were spiked with different concentrations of SEA, SEB, or both of them, respectively. Average recoveries of SEA and SEB from the spiked samples were all nearly between 82% and 104%. The result suggested that one cell fusion with simultaneous immunization by multiple antigen to prepare monoclonal antibody against them was possible, simple, and economic. The monoclonal antibody could be used in simultaneous detecting multifarious SEs.  相似文献   

17.
A previously developed fluorescence sensing platform, combining spatial illumination using electroluminescence (EL) semiconductor strips with charge coupled device (CCD)-based detection (EL-CCD), was adapted to a new 96-well chip for colorimetric immunological assays, enhancing the capabilities of the EL-CCD platform. The modified system was demonstrated using a colorimetric-based enzyme linked immunosorbent assay (ELISA) for detection of staphylococcal enterotoxin B (SEB). Limits of detection (LODs) of 3.9 ng/mL (±2.4 ng/mL) SEB were determined with the ELISA chip measured using the EL-CCD platform, following a standard 4-h ELISA protocol. The LODs were comparable to those obtained using standard 96-well ELISA plates measured using a standard laboratory 96-well plate reader. The miniature 96-well ELISA chip however required as little as 5-μL samples, representing a tenfold reduction in sample volume compared to a standard 96-well ELISA plates. The ELISA chip also demonstrated detection of SEB spiked into various food matrices (milk, mushrooms, and mayonnaise) using limited-to-no sample preparation, with LODs ranging from 3.9 to 18.5 ng/mL depending on the matrix. The EL-CCD platform is versatile, capable of multi-mode detection (e.g., fluorescent and colorimetric along with solution and solid phase assays), and could readily be applied to other field portable or point-of-care applications. Figure Detection of SEB using miniature ELISA chips coupled with a portable electroluminiscent-charge couple device (EL-CCD) detection system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A versatile and novel method has been developed for microfluidic immunosensing of the food-borne pathogen Staphylococcus enterotoxin B (SEB) in poly(dimethylsiloxane) (PDMS) chips. Supported bilayer membranes (SBMs) were generated by vesicle fusion in oxidized PDMS microchannels for minimizing non-specific adsorption of biomolecules. The stability of SBMs was strengthened with a streptavidin layer to make them air-stable and allow for subsequent display of the biotin-functionalized antibodies. The reinforced supported bilayer membranes (r-SBMs) are fluid, exhibiting a lateral diffusion coefficient of approximately 1.9 microm(2) s(-1), and no detectable change of mobility was found after dehydration/rehydration. This is a substantial improvement over phosphatidylcholine (PC) membranes on PDMS, which suffered a roughly 10% reduction in the mobile fraction and 30% decrease in mobility after dehydration. Non-specific protein adsorption in the membrane-treated channels was reduced 100-1000 fold as compared to PDMS surfaces without a membrane coating. A flow-based microfluidic immunosensor for SEB was developed using antibodies linked to the r-SBMs in PDMS channels, and a detection limit of 0.5 ng mL(-1) was obtained from the linear portion of the calibration curve. The microchip was applied to detection of SEB in milk, and similar response and sensitivity were obtained, demonstrating the sensor's remarkable performance for real world samples. The r-SBMs overcome the stability hurdle in SBM-modified surfaces, opening up possibilities for transport and storage of membrane-functionalized microchips in the dehydrated form without compromising the performance, and facilitating the commercialization of disposable SBM-based microdevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号