首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
丝印电极法体外筛选黄嘌呤氧化酶抑制剂方法研究   总被引:1,自引:0,他引:1  
周娟  刘敏  丁虹  Hong 《化学学报》2008,66(8):995-998
建立丝印电极快速筛选黄嘌呤氧化酶(XO)抑制剂的新方法. 利用丝网印刷技术制作一次性使用的丝印碳糊电极, 采用吸附法将羧基化的多壁碳纳米管(MWNTs)修饰在电极表面, 建立测定尿酸(UA)的简单快捷的计时电流分析方法, 将该法应用于XO抑制剂的体外筛选. 在0.3 V (vs. Ag/AgCl)的工作电位下, UA在MWNTs修饰的丝印电极上产生灵敏的响应电流, 响应时间30 s, 测定UA的线性范围为2~300 μmol•L-1, 线性方程为Y (μmol•L-1)=43.8240X (μA)-0.1592, r=0.9998, 最低检出限为1 μmol•L-1. 用该法对4种中药水提物进行了筛选, 相对空白对照组, 桑寄生500 μg•mL-1浓度组有显著性差异. 该法简单、快速, 电极制作成本低, 所需仪器简单, 适用于体外大量筛选XO抑制剂.  相似文献   

2.
A composite material based on mixed-valence ruthenium and cobalt oxides, electrodeposited on the surface of a screen printed electrode, exhibits high catalytic activity in the electrooxidation of uric acid, xanthine, and hypoxanthine. Catalysis manifests itself as a decrease in the substrate oxidation overvoltage and an increase in current at the potential of modifier oxidation. A method is proposed for the simultaneous amperometric detection of two-component systems uric acid–xanthine, xanthine–hypoxanthine, and uric acid–hypoxanthine using a screen printed electrode with two working electrodes modified by this composite. The dependence of the analytical signal on the concentration of analytes is linear in the range 5 × 10–8 to 5 × 10–3 M for uric acid and xanthine and from 5 × 10–7 to 5 × 10–3 M for hypoxanthine.  相似文献   

3.
Xanthine is a significant biomolecule and its concentration level in urine and blood plasma is an indicator of specified pathological states. Here, a new sensing platform was designed, which showed excellent analytical performance for xanthine. Importantly, it is the first time to investigate the kinetics of xanthine metabolic reaction by electrochemical method. The results demonstrated that the conversion of xanthine to uric acid completely conformed to the Michaelis-Menten kinetics. Furthermore, we also studied the inhibitory effect of febuxostat on xanthine oxidase activity detailed. As expected, the work may offer potential value for researchers in the treatment of hyperuricemia and gout.  相似文献   

4.
《Analytical letters》2012,45(13):2011-2025
Abstract

A stripping method for the determination of xanthine at the submicromolar concentration level is described. The method is based on controlled adsorptive accumulation of xanthine at a thin-film mercury electrode followed by a linear scan voltammetry measurement of the surface species. Optimum experimental conditions were found to be the use of a 5.0 × 10?3 M NaOH solution, an accumulation potential of 0.00 V, and a scan rate of 20 mV s?1. The response of xanthine is linear over the concentration range 20–140 ppb. For an accumulation time of 30 min, the detection limit was found to be 36 ppt (2.3 × 10?10 M). The more convenient relations for measuring xanthine in the presence of the metals, hypoxanthine, amino acids, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine in adenosine-5′-triphosphate or DNA.  相似文献   

5.
《Analytical letters》2012,45(3):323-332
Abstract

A Selective and sensitive assay of hypoxyanthine, xanthine and inosine by reversed-phase liquid chromatography coupled with immobilized enzyme reactors is described. The flourometric detection of hydrogen peroxide using immobilized peroxidase and p-hydroxyphenylacetic acid was applied to the assay of hypoxanthine, xanthine and inosine, which were oxidized to hydrogen peroxide in the presence of the immobilized enzymes (purine nucleoside phosphorylase and/or xanthine oxidase. The enzymes were immobilized the the intermolecular cross-linking method on controlled pore-glass. The method established was applied to serum and urine samples. The detection limits of hypoxanthine, xanthine and inosine were approximately 130, 300 and 650 pg per injection, respectively.  相似文献   

6.
《Electroanalysis》2004,16(15):1271-1278
Four kinds of xanthine oxidase (XOD) based amperometric biosensors were fabricated and their analytical performances were compared. Polypyrrole (PPY)/XOD biosensor was constructed by electrochemical oxidation of pyrrole in the solution containing xanthine oxidase and pyrrole in this paper. Colloidal Au was then immobilized on the biosensor. On the other hand, electron mediator, Prussian Blue (PB), was deposited on the electrode before the immobilization of PPY/XOD to enhance electron‐transfer rate and current response. The results showed that PPY/XOD, PPY/XOD/Au‐colloid, PB/PPY/XOD and PB/PPY/XOD/Au‐colloid biosensors exhibit good response to xanthine in 1×10?6 M and 2×10?5 M and Michaelis‐Menten constants (Km) of these biosensors were 242.2, 113.4, 144.5, 43.2 μmol?L?1, respectively. The dependence of current responses with applied voltages was discussed, and different mechanisms of these biosensors were discussed. It has been found that colloidal Au can enhance the current response at the same concentration of xanthine solution and decrease the energy‐barrier of electron‐transfer reaction on the electrode.  相似文献   

7.
A xanthine biosensor was fabricated by the covalent immobilization of xanthine oxidase (XO) onto a functionalized conducting polymer (Poly‐5, 2′: 5′, 2″‐terthiophine‐3‐carboxylic acid), poly‐TTCA through the formation of amide bond between carboxylic acid groups of poly‐TTCA and amine groups of enzyme. The immobilization of XO onto the conducting polymer (XO/poly‐TTCA) was characterized using cyclic voltammetry, quartz crystal microbalance (QCM), and X‐ray photoelectron spectroscopy (XPS) techniques. The direct electron transfer of the immobilized XO at poly‐TTCA was found to be quasireversible and the electron transfer rate constant was determined to be 0.73 s?1. The biosensor efficiently detected xanthine through oxidation at +0.35 V and reduction at ?0.25 V (versus Ag/AgCl) of enzymatically generated hydrogen peroxide. Various experimental parameters, such as pH, temperature, and applied potential were optimized. The linear dynamic ranges of anodic and cathodic detections of xanthine were between 5.0×10?6?1.0×10?4 M and 5.0×10?7 to 1.0×10?4 M, respectively. The detection limits were determined to be of 1.0×10?6 M and 9.0×10?8 M with anodic and cathodic processes, respectively. The applicability of the biosensor was tested by detecting xanthine in blood serum and urine real samples.  相似文献   

8.
A simple method is presented for the simultaneous differential pulse voltammetric determination of uric acid, xanthine and hypoxanthine. It is based on the improved current responses of the three analytes at carbon paste electrodes polarized in a dilute alkaline medium (0.002 mol/l NaOH, 0.1 mol/l NaClO4) at 1.3 V vs. SCE for a short time. Compared with the methods reported in the literature, this procedure has a much wider linear range (2 to 3 orders of magnitude in concentration), lower detection limits (5 to 10 g l–1) and less interference by ascorbic acid. The electrochemical responses were found to be dependent on the pre-anodization potential and the time imposed on the electrodes as well as on the alkalinity of the supporting electrolyte. The proposed procedure was used to determine uric acid, xanthine and hypoxanthine in human urine without any preliminary treatment.  相似文献   

9.
Fish muscle extracts (Scomberomorus— brasiliensis- carite) were analyzed for their hypoxanthine content using a flow injection system incorporating an immobilized xanthine oxidase bioreactor. The xanthine oxidase was immobilized under mild conditions to a 2-fluoro-1-methylpyridinium Fractogel support. The uric acid produced from the oxidation of hypoxanthine by the immobilized xanthine oxidase at pH 7.0 and 35‡C was monitored at 290 ran. Hypoxanthine concentrations as low as 4.4 Μmol/L can be detected. Up to 30 samples per hour can be analyzed at a flow rate of 1 mL/min, using 150 ΜL sample volumes and a bioreactor dimension of 1.0 cm x 2.0 mm id. Recovery yields were between 92 and 99%. Both within day and between day precisions gave CVs < 5.00% (n = 30). Good correlation (r = 0.998) is obtained when 78 fish samples were analyzed for their hypoxanthine content both by this FI method and a reference HPLC method.  相似文献   

10.
《Electroanalysis》2017,29(7):1828-1837
Xanthine and its methyl derivatives, theophylline and caffeine are purines which find important roles in biological systems. The simultaneous voltammetric behaviour of these purines has been studied on a glassy carbon electrode modified with an electropolymerised film of para amino benzene sulfonic acid. Well defined and well separated peaks were obtained for the oxidation of xanthine, theophylline and caffeine on the polymer modified electrode in the square wave mode. The experimental requirements to obtain the best results for individual as well as simultaneous determination were optimised. The signal for the electro‐oxidation was found to be free of interferences from each other in the range 0.9 – 100 μM in the case of xanthine and from 10–100 μM in the case of theophylline and caffeine with detection limits 0.35 μM, 7.02 μM and 11.95 μM respectively. The simultaneous determination of uric acid, the final metabolic product of xanthine oxidation in biological systems could also be accomplished along with xanthine, theophylline and caffeine atphysiological pH. The mechanistic aspects of the electro‐oxidation on the polymer modified electrode was also studied using linear sweep voltammetry. Chronoamperometry was employed to determine the diffusion coefficient of these xanthines. The developed sensor has been successfully demonstrated to be suitable for the determination of these compounds in real samples without much pre‐treatment.  相似文献   

11.
This paper describes the development of a xanthine oxidase/poly‐m‐phenylenediamine (XOD‐PPD)‐modified electrode. The biosensor was constructed by encapsulating XOD in a sol‐gel matrix deposited onto a platinum based screen‐printed electrode functionalized with a permselective PPD membrane. The hydrogen peroxide generated as a final product of the enzymatic reaction between the hypoxanthine and the XOD or by the spontaneous dismutation of superoxide radicals was selectively monitored at +700 mV. The use of a highly selective PPD layer blocked the nonspecific oxidation of other oxidizable molecules. Finally the biosensor was applied to the determination of the antioxidant capacity of acetylsalicylic acid.  相似文献   

12.
《Analytical letters》2012,45(15):1799-1820
Abstract

A comparison of an enzymeless direct electrochemical oxidation procedure at a platinum electrode for the determination of uric acid, and an enzyme sensor with immobilized urate: oxygen oxidoreductase (uricase), was performed in flow stream systems. The uricase enzyme electrode is based on the H2O2 oxidation current. Both amperometric methods were related to the wall-known photometric uricase-catalase-procedure (UCM) as a reference method. The measured values of both methods are of the first derivatives of current change (dI/dt) due to the electrochemical or electrochemical enzymatic reaction, respectively. The analytical quality of the measurements is characterized by: precision s% within run < 2% day to day < 5% accuracy acceptable (control materials) correlation to reference method r >0.93 analysis rate 80 samples/hr  相似文献   

13.
Xanthine oxidase, in catalysing the oxidation of hypoxanthine to uric acid, produces hydrogen peroxide. Chemiluminescence is produced by oxidation of luminol by reactive hydroxyl radicals formed from H2O2 by Fe-EDTA and similar complexes. The concentrations of the various components in the active reagent are optimized in order to obtain a constant chemiluminescent signal of high intensity. The effect of chelate structure on chemiluminescence generation is studied, and a structure-activity relationship is deduced. The detection limit for xanthine oxidase is 5 pg.  相似文献   

14.
An electrochemical anodic stripping procedure for ultra-trace assay of xanthine in Cu2+ solution at a glassy carbon electrode (GCE) is described. Cyclic voltammetry was used to characterize the nature of the process taking place at the GCE. The anodic stripping response in the presence of Cu2+, at 150mV (peak I) and 600mV (peak II), is evaluated with respect to various experimental and instrumental conditions. Voltammetric studies show that the mechanism of the overall reaction is similar to that of the oxidation of purine derivatives at a pyrolytic graphite electrode. It is found that the copper metal deposited onto the GCE was oxidized to Cu+ at around –180mV vs. Ag/AgCl and the generated Cu+ reacted with xanthine to accumulate on the GCE as an insoluble compound. The Cu+-xanthine compound accumulated on the GCE was redissolved by the oxidation of Cu+ to Cu2+ at ca. 150mV, and the concentration of xanthine in the vicinity of the GCE increased. The results enabled us to use the measurement of the oxidation peak current as the basis of a simple, accurate and rapid method of determining xanthine within a concentration range of 19.9 to 166nM for peak (I) and 0.24 to 17.2µM for peak (II). Promising results were obtained for xanthine determination by using an external mixing step prior to stripping measurements, which yielded a detection limit of 0.138µgL–1 (9.1×10–10M) xanthine. The effect of some interferences (e.g. purine compounds, amino acids and some metal ions) was considered.  相似文献   

15.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

16.
A combination of electrophoretically mediated microanalysis (EMMA) methodology with a partial filling technique was developed for screening of xanthine oxidase (XOD) inhibitors in substances used in traditional Chinese medicine (TCM). In order to achieve sufficient separation, a micellar electrokinetic chromatography (MEKC) method was employed for the separation. The enzyme activity was determined by the quantification of the peak area of the product, uric acid (UA), at 295 nm. Enzyme inhibition can be read out directly from the reduced peak area of UA in comparison to a reference electropherogram obtained in the absence of any inhibitor. The method was validated using a commercially available XOD inhibitor, 4-aminopyrazolo[3,4-d]pyrimidine, and the IC50 value was determined to be 29.90 ± 0.26 μM. Fifteen natural extracts from TCM were screened, and Cortex Phellodendri (the dried bark of Phellodendron chinense) extract was found to be positive for XOD inhibition.  相似文献   

17.
As a final step of the purine metabolism process, xanthine oxidase catalyzes the oxidation of hypoxanthine and xanthine into uric acid. Our research has demonstrated that Erycibe obtusifolia has xanthine oxidase inhibitory properties. The purpose of this paper is to describe a new strategy based on a combination of multiple mass spectrometric platforms and thin‐layer chromatography bioautography for effectively screening the xanthine oxidase inhibitory and antioxidant properties of E. obtusifolia. This strategy was accomplished through the following steps. (i) Separate the extract of E. obtusifolia into fractions by an autopurification system controlled by liquid chromatography with mass spectrometry. (ii) Determine the active fractions of E. obtusifolia by thin‐layer chromatography bioautography. (iii) Identify the structure of the main active compounds with the information provided by direct analysis in real time mass spectrometry. (iv) Calculate the IC50 value of each compound against xanthine oxidase using high‐performance liquid chromatography. Using the caulis of E. obtusifolia as the experimental material, seven target peaks were screened out as xanthine oxidase inhibitors or antioxidants. Our screening strategy allows for rapid analysis of small molecules with almost no sample preparation and can be completed within a week, making it a useful assay to identify unstable compounds and provide the empirical foundation for E. obtusifolia as a natural remedy for gout and oxidative‐stress‐related diseases.  相似文献   

18.
《Analytical letters》2012,45(12):2097-2114
Abstract

A highly sensitive and rapid chemiluminescent assay for the determination of the activity of xanthine oxidase (XOD) was developed. The chemiluminescent signal was obtained from the catalyzed oxidation of hypoxanthine, accelerated and amplified using a Fe-EDTA complex and perborate, which acts on luminol. The same luminescent mixture was previously used as detection system for immunoassays. Two different mixtures were used, which differ in their luminol and perborate content, with (CLMrho) or without (CLMb) addition of 0.1 μM rhodamine fluorophor. The response obtained from XOD standard solutions in buffer was linear from 5 to 500 U L?1 and from 0.7 to 250 U L?1 for CLMrho and CLMb respectively, at 25°C. 5 and 0.7 U L?1 were the detection limits at 1 standard deviation level. The intra- and inter-assay relative standard deviations ranged from 6 to 12 % for both CLM. Measurements were made using the high performance, low-light level imaging Berthold luminograph LB-980 which allows simultaneous determination of several samples distributed on a microtiterplate. Various kinds of milk were analyzed for XOD content, which in pasteurized milk depends on the fat content and in the UHT milk disappears owing to the heat treatment.  相似文献   

19.
A high‐performance liquid chromatography method with on‐line precolumn enzymatic reaction for the screening of xanthine oxidase inhibitors in natural extracts was developed. In this method, the enzymatic reaction occurred at the capillary inlet during a predetermined waiting period, after which the reaction product, uric acid, was separated and detected by liquid chromatography using ultraviolet absorption at 295 nm. Enzyme inhibition can be read out directly from the reduced peak area of uric acid in comparison to a reference chromatogram obtained in the absence of any inhibitor. In the present study, the availability of on‐line precolumn enzymatic reaction with ultraviolet detection was firstly evaluated by determining the inhibitory mechanism and IC50 values of allopurinol, a commercially available positive drug. Then, the newly developed method was applied to screening of ten natural extracts from traditional Chinese medicine and as a result, the extract of Epimedium sagittatum (Sieb. et Zucc.) Maxim was found to be most positive for xanthine oxidase inhibition. The results obtained were compared with those obtained by offline enzyme assay and the effectiveness of the present method was confirmed. A rapid, low‐cost, and fully automated method for xanthine oxidase inhibitor screening was proposed.  相似文献   

20.
We report here a simple and easy electrochemical approach for sensitive detection of non‐electroactive melamine using a disposable screen printed carbon electrode (SPCE) with uric acid as the recognition element. It is based on the competitive adsorptive behavior of melamine at the preanodized SPCE causing suppression in the oxidation current of uric acid. A linear range up to 126 ppb with a detection limit of 1.6 ppb (S/N=3) is achieved at the preanodized SPCE by differential pulse voltammetry. The electrochemical method is successfully applied to detect the melamine content in tainted milk powder and dog food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号