首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioassay technique is used for the estimation of actinides present in the body based on the excretion rate of body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha-spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of U-isotopes in urine samples using anion-exchange resin and 232U tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of uranium along with calcium phosphate. Separation of U was carried out by Amberlite, IRA-400, anion-exchange resin. U-fraction was electrodeposited and activity estimated using tracer recovery by alpha-spectrometer. Eight routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range of 51% to 67% with a mean and standard deviation of 60% and 5.4%, respectively.  相似文献   

2.
In this work a method used conventionally for ICP-MS measurements have been modified and readapted for the determination of actinides (U and Th isotopes) in refractory samples by alpha-spectrometry. The method is based in a total dissolution of the sample by alkali fusion. In the first stages of our studies, we try to digest refractory samples by leaching with aqua regia followed by the application of a liquid–liquid solvent extraction process for the sequential isolation of the uranium and thorium isotopes from the dissolved fraction. These actinides were finally electroplated in stainless steel discs and measured in an alpha-spectrometer using PIPS detectors. On the other hand, gamma measurements were carried out in aliquots of the same samples in order to check the results produced by alpha spectrometry. Clear disagreements were found between the results obtained by both techniques. This problem was solved by the application of an alkali fusion technique where a total dissolution of the sample is performed. It was found in addition that the alkali fusion is easily applicable, less time-consuming, needs less reagents than leaching and it does not require sophisticated apparatus to be executed. In this paper the whole procedure for U and Th determination in refractory samples by alpha-spectrometry with alkali fusion is presented and validated.  相似文献   

3.
For preparedness purposes, a fast and reliable method is essential to quickly assess radioactive fallout in the environment. The rapid determination of certain nuclides such as alpha-emitting actinides is necessary to make initial environmental and agricultural advisories. Therefore, a method using a preconcentration resin and low energy gamma-spectrometry was developed to a fast determination of certain nuclides in soil samples. The preconcentration resin allows samples to be partially purified and then directly measured by gamma-spectrometry without further extraction or separation. The initial gamma-measurement provides fast and accurate determination of certain nuclides such as 241Am and 235U which are normally analyzed by alpha-spectrometry, but require additional time-consuming purification and separation steps. After gamma-spectrometry, the sample may be further processed and analyzed by traditional methods to determine actinides or other nuclides more precisely.  相似文献   

4.
The parameters for a sulfate based electrodeposition method were optimized for the preparation of Cm and Np alpha-spectrometry sources. Alpha-spectrometry requires the preparation of essentially massless sources to eliminate self-absorption of alpha-particles, which can cause degraded alpha-spectra. A variety of methods for the electrodeposition of actinides have been reported in the literature, many of which require long deposition times and lack reproducibility. A previously reported sulfate based method has been evaluated for the preparation of Np and Cm sources. High yields were achieved and source preparation took 90 minutes or less. The effects of electrodeposition time and pH of the depositing solution were evaluated for each element. Typical resolution (FWHM) for sources prepared by this method is 50 keV or less with recoveries approaching 100%.  相似文献   

5.
The determination of actinides in environmental soil and sediment samples are very important for environmental monitoring. A rapid actinide separation method has been developed and implemented that allows measurement of U, Pu and Am isotopes in large soil samples (10–15 g) with high chemical yields and effective removal of matrix interferences. The radiochemical procedures involve the total dissolution of soil samples, separation on anion-exchange resin, and separation and purification by extraction chromatography, e.g., UTEVA, TEVA, and TRU with measurements of radionuclides by alpha-spectrometry. The validation of the method is performed through the analysis of reference materials or by participating in laboratory intercomparison programs.  相似文献   

6.
In this paper a technique to separate and measure both isotopes (237Np and 239Np) together is presented. A combined shape pulse discrimination liquid scintillation measurement with gamma-spectrometry, permits a precise measurement after the radiochemical separation. This technique was carried out by using an Eichrom chromatographic column (TEVA) as the first step of a more complete method, applied in the Nuclear Regulatory Authority, to separate actinides in nuclear waste and liquid effluents. The MCA is 0.08 Bq/l by alpha-spectrometry and 0.22 Bq/l (2σ) by liquid scintillation counting (LSC) for 93.7% of measurement efficiency and 98.4% of chemical recovery.  相似文献   

7.
Alpha emitting actinides such as plutonium, americium or curium were measured by alpha-spectrometry after radiochemical separation. The short range of alpha-particles within matter requires, after a pre-concentration process, a succession of isolation and purification steps based on the valence states modification of the researched elements. For counting, actinides were electrodeposited in view to obtain the mass-less source necessary to avoid self-absorption of the emitted radiations. Activity concentrations of gamma-emitting fission products were calculated after measurement with high purity germanium detectors (HPGe). These different methods were used to analyse soils sampled in the Republic of Belarus, not far from the Chernobyl nuclear plant.  相似文献   

8.
An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry.  相似文献   

9.
We applied three techniques (DF-ICP-MS, PERALS and alpha-spectrometry) for the determination of minor actinides at environmental levels. For each method the limit of detection and the resolution were estimated in order to study the content and isotopic composition of the actinides. Two international reference materials, IAEA-135 (Irish Sea Sediment) and IAEA-300 (Baltic Sea sediment) were analyzed for activity concentrations of 238Pu, 239Pu, 240Pu, 241Pu and 241Am. The sensitivities of the three determination techniques were compared.  相似文献   

10.
Inductively coupled plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA) have been investigated as alternatives to alpha-spectrometry for the low-level determination of237Np and other actinides in environmental matrices. ICP-MS in particular, has been shown here to offer suitable sensitivity, precision and accuracy compared to the other techniques, with considerably faster sample throughput relative to radiometric and activation approaches. Added advantages of ICP-MS are found to include the abilities to determine other long-lived actinides simultaneously and to quantify239Pu:240Pu ratios. The neutron activation analysis approach was found to be particularly prone to interference especially from uranium nuclides.  相似文献   

11.
Summary New, quantitative methods for the determination of actinides have been developed for application to marine environmental samples (e.g., sediment and fish). The procedures include aggressive dissolution, separation by anion-exchange resin, separation and purification by extraction chromatography (e.g., TRU, TEVA and UTEVA resins) with measurement of the radionuclides by semiconductor alpha-spectrometry (SAS). Anion-exchange has proved to be a strong tool to treat large volume samples, and extraction chromatography shows an excellent selectivity and reduction of the amounts of acids. The results of the analysis of uranium, thorium, plutonium and americium isotopes by this method in marine samples (IAEA-384, -385 and -414) provided excellent agreement with the recommended values with good chemical recoveries.  相似文献   

12.
Several methods for the electrodeposition of actinides for alpha-spectrometry analysis have been developed over the past few decades, but none have been specifically designed to facilitate rapid analysis in a field situation. This paper describes the development of an electrodeposition procedure that is specifically adapted for use in a mobile lab. Using these techniques one would be able to obtain preliminary results in the event of a radiological incident. Quantitative yields with associated uncertainties have been determined for the procedure. It has also been shown that short deposition times can provide quantitative results.  相似文献   

13.
A radiochemical procedure followed by alpha spectrometry has been developed for the determination of237Np present at low activity concentrations in seawater. The analytical procedure is based on concentration of actinides from 1800 1 sea water samples by hydroxide precipitations. Neptunium is isolated by ion exchange, fluoride precipitation and extraction with TTA (thenoyltrifluoroacetone). As a radiochemical yield determinant239Np or235Np is used. Neptunium is electroplated onto stainless steel discs before alpha-spectrometry for about 10 days. The procedure allows for sequential separation of plutonium, americium, technetium and radiocaesium together with neptunium. The radiochemical yield for neptunium is only 20–50%, but the procedure has been applied with success on several samples contaminated with237Np at fallout or close to fallout levels.  相似文献   

14.
There is a need for fast, reliable methods for the determination of actinides and 89/90Sr analysis on environmental and bioassay samples in response to an emergency radiological incident. The Savannah River Site (SRS) Environmental Laboratory participated in the National Institute of Standards and Technology Radiochemistry Intercomparison Program (NRIP-06) and analyzed water and urine samples within 8 hours of receipt. The SRS Environmental Laboratory was the only lab that participated in the program that analyzed these samples for both actinides and 89/90Sr within an eight hour turnaround time. A rapid actinide and 89/90Sr separation method was used for both urine and water samples. This method uses stacked TEVA Resin®, TRU Resin® and Sr-Resin® cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), and americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha-spectrometry. Vacuum box cartridge technology with rapid flow rates was used to minimize sample preparation time. This paper discusses the technology and conditions employed for both water and urine samples and presents the SRS performance data on the NRIP-06 samples.  相似文献   

15.
Summary The determination of actinides in environmental soil and sediment samples is very important for environmental monitoring as well as for emergency preparedness. A new, rapid actinide separation method has been developed and implemented that provides total dissolution of large soil samples, high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resinò, TRU Resinò and DGA-Resinò cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium, neptunium, uranium, americium, and curium using a single multi-stage column combined with alpha-spectrometry. The method combines a rapid fusion step for total dissolution to dissolve refractory analytes and matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.  相似文献   

16.
Plutonium and other actinides were determined in human autopsy tissues of occupationally exposed workers who were registrants of the United States Transuranium and Uranium Registries (USTUR). In this study, Pu was purified and isolated from Am, U and Th, after drying and wet-ashing of the tissues, and the addition of238Pu as a radiotracer. After electrodeposition onto vanadium planchets the239+240Pu activity was determined by alpha-spectrometry. A fission track method was developed to determine239Pu in the presence of238Pu and240Pu, using LexanTM polycarbonate detectors. Combining the two techniques allowed the determination of the240Pu/239Pu activity and atom ratios. Data from selected USTUR cases are presented.  相似文献   

17.
Two typical methods used for the determination of uranium in human autopsy tissues are kinetic phosphorescence analysis (KPA) and alpha-spectrometry, both of which have significant limitations and advantages. KPA is limited because of the amount of sample used (1–10 ml for sample digestion followed by one ml KPA aliquots), no isotopic information is provided, phosphorescence degradation by salts in solution, and even more importantly, it does not provide chemical recovery information. For samples with sub ng uranium concentrations per g of inorganic material, preconcentration is necessary, which may require chemical recovery (other than simple evaporation). While alpha-spectrometry has very good radiometric detection limits for 238U, the very long half-life of 238U (4.468·109 y) restricts its mass detection limit (27 ng). KPA, on the other hand, has a detection limit three orders of magnitude lower (0.02 ng) for natural uranium. A recovery corrected method for the determination of natural uranium in human tissues was developed combining preconcentration of human tissues dissolved in 6M HCl by anion exchange with alpha-spectrometry and kinetic phosphorescence analysis, utilizing 232U as a tracer. Solution aliquots containing up to 6 g of bone ash were pre-concentrated for KPA measurement thereby allowing the use of up to 25% of the original sample solution weight for analysis by KPA. The radiochemical yield of 232U was determined by alpha-spectrometry and the uranium content was determined by KPA. The mean radiochemical yields obtained for human tissue samples range from 65% to 106% with a mean of 85%±8%.  相似文献   

18.
The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, americium and curium isotopes in large soil samples (100–200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin®, TRU Resin® and DGA-Resin® cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha-spectrometry. The method combines an acid leach step and innovative matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. This method is unique in that it provides high tracer recoveries and effective removal of interferences with small extraction chromatography columns instead of large ion-exchange resin columns that generate large amounts of acid waste. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.  相似文献   

19.
Low level alpha-spectrometry was applied for the determination of actinides separated from environmental samples. Interference free detection limits of 1.5–2.0 E-5 Bq at a counting interval of 150,000 sec and detection limits of the investigated samples of 0.05–0.005 Bq kg–1 were determined.Presented; Actinides-89, September 24–29, 1989, Taschkent, USSR.  相似文献   

20.

A new rapid method has been developed for the determination of Th, Pu, Np, U, Am and Cm isotopes in water samples of about 1 L. Actinides are pre-concentrated by co-precipitation with Ca phosphate, sequentially separated on stacked TEVA and TK221 cartridges and measured by alpha spectrometry. The TK221 extraction chromatographic resin contains i.e. CMPO and DGA extractants. It has been characterized by measuring the weight distribution ratios (Dw) of actinides which are higher than 1000 for all actinides in 3 M HNO3. The method has been optimized, applied for the analysis of tap and seawater samples and validated by participating in an IAEA proficiency test. Chemical recoveries for all actinides are better than 50%. The method can be performed within one day.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号