首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Triplet-triplet annihilation based photon upconversion (TTA-UC) were constructed successfully by chiral self-assembly strategy.Enhanced TTA-UC could be obtained in the racemic assemblies compared with the homochiral assemblies.  相似文献   

2.
For real‐world applications of photon upconversion based on the triplet–triplet annihilation (TTA‐UC), it is imperative to develop solid‐state TTA‐UC systems that work effectively under low excitation power comparable to solar irradiance. As an approach in this direction, aromatic crystals showing high triplet diffusivity are expected to serve as a useful platform. However, donor molecules inevitably tend to segregate from the host acceptor crystals, and this inhomogeneity results in the disappointing performance of crystalline state TTA‐UC. In this work, a series of cast‐film‐forming acceptors was developed, which provide both regular acceptor alignment and soft domains of alkyl chains that accommodate donor molecules without segregation. A typical triplet sensitizer, PtII octaethylporphyrin (PtOEP), was dispersed in these acceptor crystals without aggregation. As a result, efficient triplet energy transfer from the donor to the acceptor and diffusion of triplet excitons among regularly aligned anthracene chromophores occurred. It resulted in TTA‐UC emission at low excitation intensities, comparable to solar irradiance.  相似文献   

3.
Water-soluble triplet sensitizer with permethyl-β-cyclodextrin (PMCD) grafting on a Schiff-base Pt (II) complex (Pt-2),was synthesized to enhance the efficiency of triplet-triplet energy transfer through hostguest complexation.DPA dimer A-2 in which two DPA carboxylate were covalently linked with an alkyl chain showed an improved triplet-triplet annihilation through both intramolecular interaction and self-aggregation. Significantly improved TTA-UC emission was observed with Pt-2 and A-2 as the donor/acceptor pair.  相似文献   

4.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

5.
Water-soluble triplet sensitizer with permethyl-β-cyclodextrin(PMCD) grafting on a Schiff-base Pt(Ⅱ)complex(Pt-2),in which PMCD unit serves as a host for binding the acceptors and the Schiff-base Pt(Ⅱ)complex serves as a triplet sensitizer,was synthesized to investigate the effect of supramolecular complexation and assembly on the triplet-triplet annihilation upconversion emission in water.9,10-Diphenylanthracence(DPA) carboxylate(A-1) and its dimer(A-2) in which two DPA carboxylate were covalently linked with an alkyl chain were synthesized as triplet acceptors which also play a role of guest molecules for PMCD.A-1 and A-2 showed high affinity with PMCD,and A-2 can readily aggregate in water and form micron sized assemblies due to the hydrophobic effect and π-π stacking of anthracene core in A-2.The efficiency of TTA-UC was demonstrated to be enhanced by a synergistic effect of host-guest complexation of Pt-2 with A-2 and the self-aggregation of the acceptor A-2,which facilitated the energy transfer and energy fusion among donor and acceptor.  相似文献   

6.
In the present study, the red-light absorbing platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP) was used as a triplet sensitizer in conjunction with two distinct iodophenyl-bearing BODIPY derivatives independently serving as triplet acceptors/annihilators poised for photon upconversion based on triplet-triplet annihilation. In deaerated benzene solutions, extremely stable and high quantum efficiency green (Phi(UC) = 0.0313 +/- 0.0005) and yellow (Phi(UC) = 0.0753 +/- 0.0036) upconverted emissions were observed from selective red excitation of the PtTPBP sensitizer at 635 +/- 5 nm. The current systems represent the first examples of photon upconversion where aromatic hydrocarbons do not serve the role of triplet acceptor/annihilator. Notably, the nature of the current chromophore compositions permitted highly reproducible upconversion quantum efficiency determinations while permitting the evaluation of the triplet-triplet annihilation quantum yields in both instances.  相似文献   

7.
Triplet-triplet annihilation (TTA) based upconversions are attractive as a result of their readily tunable excitation/emission wavelength, low excitation power density, and high upconversion quantum yield. For TTA upconversion, triplet sensitizers and acceptors are combined to harvest the irradiation energy and to acquire emission at higher energy through triplet-triplet energy transfer (TTET) and TTA processes. Currently the triplet sensitizers are limited to the phosphorescent transition metal complexes, for which the tuning of UV-vis absorption and T(1) excited state energy level is difficult. Herein for the first time we proposed a library of organic triplet sensitizers based on a single chromophore of boron-dipyrromethene (BODIPY). The organic sensitizers show intense UV-vis absorptions at 510-629 nm (ε up to 180,000 M(-1) cm(-1)). Long-lived triplet excited state (τ(T) up to 66.3 μs) is populated upon excitation of the sensitizers, proved by nanosecond time-resolved transient difference absorption spectra and DFT calculations. With perylene or 1-chloro-9,10-bis(phenylethynyl)anthracene (1CBPEA) as the triplet acceptors, significant upconversion (Φ(UC) up to 6.1%) was observed for solution samples and polymer films, and the anti-Stokes shift was up to 0.56 eV. Our results pave the way for the design of organic triplet sensitizers and their applications in photovoltaics and upconversions, etc.  相似文献   

8.
Control over supramolecular assemblies of donor and acceptor arrays in nanoscale dimension that facilitate efficient energy transfer resulting in tunable emission is an outstanding challenge. In pursuit of this goal, we have designed a supramolecular donor-acceptor organogel with tunable emission from green to red through controlled energy transfer by simply varying the acceptor concentration. Temperature-dependent UV/vis absorption, XRD, and AFM studies of the coassembly of 1 (donor) and 2 (acceptor) revealed the intercalation of 2 within the self-assembly of 1. Upon excitation of the decane gels of 1 with 0-2 mol % of 2, quenching of the emission of the former at 509 nm with the formation of the monomer emission of the latter at 555 nm is observed. Upon further addition of 2 (2-20 mol %), the emission was continuously red-shifted to 610 nm, which corresponds to the aggregate emission of 2. Consequently, a 98% quenching of the donor emission was observed at 509 nm. Fluorescence microscopic studies provided visual evidence for the color tuning of the FRET emission. Thus efficient trapping of excitons by "isolated" or "aggregated" acceptors through a subtle control of the self-assembly and the photophysical properties of the donor-acceptor building blocks allowed a continuous shifting of the emission color anywhere between green and red (lambdamax, 509-610 nm) in a supramolecular light harvesting system.  相似文献   

9.
Molecular self‐assembly is a powerful means to construct nanoscale materials with advanced photophysical properties. Although the protection of the photo‐excited states from oxygen quenching is a critical issue, it still has been in an early phase of development. In this work, we demonstrate that a simple and typical molecular design for aqueous supramolecular assembly, modification of the chromophoric unit with hydrophilic oligo(ethylene glycol) chains and hydrophobic alkyl chains, is effective to avoid oxygen quenching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC). While a TTA‐UC emission is completely quenched when the donor and acceptor are molecularly dispersed in chloroform, their aqueous co‐assemblies exhibit a clear upconverted emission in air‐saturated water even under extremely low chromophore concentrations down to 40 μm . The generalization of this nano‐encapsulation approach offers new functions and applications using oxygen‐sensitive species for supramolecular chemistry.  相似文献   

10.
The results of the study of interlayer triplet-triplet energy transfer from anthracene molecules to Nile Red molecules in Langmuir-Blodgett films are presented. The observed sensitized delayed fluorescence of the energy acceptor is shown to be due to annihilation of migrating triplet excitons. It has been found that the decay kinetics of delayed fluorescence of the donor and the acceptor has a complex form and is described by a combination of the power and exponential functions. The dependence of the energy transfer efficiency on the distance between the donor and acceptor layers was studied.  相似文献   

11.
The addition of stimuli‐responsiveness to anti‐Stokes emission provides a unique platform for biosensing and chemosensing. Particularly, stimuli‐responsive photon upconversion based on triplet–triplet annihilation (TTA‐UC) is promising due to its occurrence at low excitation intensity with high efficiency. This Minireview summarizes the recent developments of TTA‐UC switching by external stimuli such as temperature, oxygen, chemicals, light, electric field, and mechanical force. For the systematic understanding of the underlying general mechanisms, the switching mechanisms are categorized into four types: 1) aggregation‐induced UC; 2) assembly‐induced air‐stable UC; 3) diffusion‐controlled UC; and 4) energy‐transfer‐controlled UC. The development of stimuli‐responsive smart TTA‐UC systems would enable sensing with unprecedented sensitivity and selectivity, and expand the scope of TTA‐UC photochemistry by combination with supramolecular chemistry, materials chemistry, mechanochemistry, and biochemistry.  相似文献   

12.
While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.  相似文献   

13.
The self‐assembly of chiral organic chromophores is gaining huge significance due to the abundance of supramolecular chirality found in natural systems. We report an interdigitated molecular assembly involving axially chiral octabrominated perylenediimide (OBPDI) which transfers chiral information to achiral aromatic moieties. The crystalline two‐component assemblies of OBPDI and electron‐rich aromatic units were facilitated through π‐hole???π donor–acceptor interactions, and the charge‐transfer characteristics in the ground and excited states of the OBPDI cocrystals were established through spectroscopic and theoretical techniques. The OBPDI cocrystals entail a remarkable homochiral segregation of P and M enantiomers of both molecular entities in the same crystal system, leading to twisted double‐racemic arrangements. Synergistically engendered cavities with the stored chiral information of the twisted OBPDI stabilize higher‐energy P/M enantiomers of trans‐azobenzene through non‐covalent interactions.  相似文献   

14.
Abstract— This paper discusses the possibility of triplet exciton motion and triplet-triplet annihilation in mixed crystal systems in which the hosts are phenylalanine, tyrosine and trypto-phan and in four protein systems. Triplet-triplet annihilation and triplet transfer are observed in certain phenylalanine- and tryptophan-host systems. No evidence of either triplet transfer or energy multiplication is found in tyrosine-host crystal systems or in any protein system.  相似文献   

15.
Metal-to-ligand charge-transfer sensitized upconverted fluorescence in noncovalent triplet energy transfer assemblies is investigated using Ir(ppy)3 as the sensitizer (ppy=2-phenylpyridine) and pyrene or 3,8-di-tert-butylpyrene as the triplet acceptor/annihilator. Upconverted singlet fluorescence from pyrene or 3,8-di-tert-butylpyrene resulting from triplet-triplet annihilation (TTA) is observed following selective excitation of Ir(ppy)3 in deaerated dichloromethane solutions using 450-nm laser pulses. In both systems, the TTA process is confirmed by the near quadratic dependence of the upconverted fluorescence intensity on incident light power, measured by integrating the upconverted delayed fluorescence kinetic traces as a function of incident excitation power. At the relatively high concentrations of pyrene that were utilized, pyrene excimer formation was detected by its characteristic broad emission centered near 470 nm. In essence, selective excitation of Ir(ppy)3 ultimately resulted in the simultaneous sensitization of both singlet pyrene and pyrene excimers, and the latter degrades the energy stored in the pyrene singlet excited state. Furthermore, in the case of di-tert-butylpyrene/Ir(ppy)3, the formation of excimers is successfully blocked because of the presence of the sterically hindering tert-butyl groups. The current work demonstrates that sensitized TTA is indeed accessible to chromophore systems beyond those previously reported, suggesting the generality of the approach.  相似文献   

16.
A new family of surface‐functionalized CdSe/ZnS core‐shell quantum dots (csQD) has been developed, which work as triplet sensitizers for triplet‐triplet annihilation‐based photon upconversion (TTA‐UC). The surface modification of csQD with acceptor molecules plays a key role in the efficient relay of the excited energy of csQD to emitter molecules in the bulk solution, where the generated emitter triplets undergo triplet‐triplet annihilation that leads to photon upconversion. Interestingly, improved UC properties were achieved with the core‐shell QDs compared with core‐only CdSe QDs (cQD). The threshold excitation intensity, which is defined as the necessary irradiance to achieve efficient TTA process, decreases by more than a factor of four. Furthermore, the total UC quantum yield is enhanced more than 50‐fold. These enhancements should be derived from better optical properties of csQD, in which the non‐radiative surface recombination sites are passivated by the shell layer with wider bandgap.  相似文献   

17.
Conventional photochemical upconversion (UC) through homo-geneous triplet-triplet annihilation (TTA) is subject to several enthalpic losses that limit the UC margin. Here, we address one of these losses: the triplet energy transfer (TET) from the sensitizer to the emitter molecules. Usually, the triplet energy level of the emitter is set below that of the sensitizer. In our system, the triplet energy level of the emitter exceeds that of the sensitizer by ~600 cm(-1). Choosing suitable concentrations for the sensitizer and emitter molecules, we can exploit entropy as a driving force for the migration of triplet excitation from the sensitizer to the emitter manifolds. Thereby we obtain a new record for the peak-to-peak TTA-UC energy margin of 0.94 eV. A modified Stern-Volmer analysis yields a TET rate constant of 2.0 × 10(7) M(-1) s(-1). Despite being relatively inefficient, the upconverted fluorescence is easily visible to the naked eye with irradiation intensities as low as 2 W cm(-2).  相似文献   

18.
Self-assembled nanotapes of a few tailor-made oligo(p-phenylenevinylene)s (OPVs) have been prepared and used as supramolecular donor scaffold to study the fluorescence resonance energy transfer (FRET) to a suitable acceptor. In nonpolar solvents, FRET occurs with nearly 63-81% efficiency, exclusively from the self-assembled OPVs to entrapped Rhodamine B, resulting in the quenching of the donor emission with concomitant formation of the acceptor emission at 625 nm. The efficiency of FRET is considerably influenced by the ability of the OPVs to form the self-assembled aggregates and hence could be controlled by structural variation of the molecules, and polarity of the solvent. Most importantly, FRET could be controlled by temperature as a result of the thermally reversible self-assembly process. The FRET efficiency was significantly enhanced (ca. 90%) in a xerogel film of the OPV1 which is dispersed with relatively less amount of the acceptor (33 mol %), when compared to that of the aggregates in dodecane gel. FRET is not efficient in polar solvents due to weak self-organization of the chromophores. These results indicate that energy transfer occurs exclusively from the self-assembled donor and not directly from the individual donor molecules. The present study illustrates that the self-assembly of chromophores facilitates temperature and solvent controlled FRET within pi-conjugated nanostructures.  相似文献   

19.
Upconversion-induced fluorescence in platinum-octaethylporphyrin (PtOEP)-doped thin films of a spirobifluorene-anthracene copolymer has been investigated. Upon exciting in the range of the absorption band (2.31 eV, 537 nm) of the guest molecules, blue fluorescence (2.75 eV, 450 nm) from the spirobifluorene host was observed. The intensity of the upconverted emission was found to be one order of magnitude higher than from a PtOEP doped but anthracene-free spirobifluorene copolymer and than previously reported for metallated porphyrin-doped polyfluorene samples. It is argued that the efficient upconversion originates from the triplet energy transfer from the phosphorescent dopant to the sensitive unit of the host polymer, followed by triplet-triplet annihilation and finally blue emission from the spirobifluorene host polymer backbone.  相似文献   

20.
《中国化学快报》2023,34(1):107511
The fabrication of highly effective photosensitizers has received considerable attention because of their attractive functions and applications in the fields of photodynamic therapy, photosynthesis, photocatalysis, etc. Thus, it is highly desirable to develop a new approach to enhance photosensitization efficiency. Herein, through coordination-driven self-assembly, a series of metallacycles with efficient fluorescence resonance energy transfer (FRET) were effectively constructed, which displayed higher photosensitization efficiency and photocatalytic activity than their model metallacycles without FRET due to broadband absorption and singlet energy transfer from the energy acceptor to the energy donor. Moreover, iodization of fluorophores induced a significant enhancement of the photosensitization efficiency and photocatalytic activity of the metallacycles. This research provides an efficient strategy for improving photosensitization efficiency and a promising platform for the preparation of effective photosensitizers and photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号