首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
A combined extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS) investigation has been performed to evaluate the coordination structure of the cadmium(II) ion in aqueous, dimethyl sulfoxide, and N,N'-dimethylpropyleneurea (dmpu) solutions. This approach has singled out the existence of a flexible coordination shell around the cadmium(II) ion in aqueous and dimethyl sulfoxide solutions, whereas a regular octahedral complex is detected in dmpu. The EXAFS and LAXS techniques provide different values of the Cd-O first shell distance (2.27(1) A and 2.302(5) A, respectively) for the hydrated and dimethyl sulfoxide solvated complexes, and this discrepancy is originated by the simultaneous presence of hexa- and heptacoordinated complexes in solution, giving rise to a broad distribution of distances around the ion. These findings demonstrate that, in solution, the cadmium(II) ion forms quite flexible hydration and dimethyl sulfoxide solvate complexes undergoing a solvent exchange with unusually stable seven-coordinated intermediate complexes, and therefore the mean ion-solvent distance is longer in solution than in the solid state. In the dmpu solution, due to the bulkiness of the solvent molecules, the octahedral cadmium(II) solvate is extremely crowded and it is not possible for a seventh ligand to enter the inner-coordination shell. This investigation shows that the combined analysis of the EXAFS and LAXS data allows a reliable determination of the structural properties of electrolyte solutions, also in the presence of flexible coordination shell with a variable number of coordinating molecules.  相似文献   

2.
The crystal structure of bis(acetylacetonato)lead(II) and the structure of the acetylacetone solvated lead(II) ion in solution have been determined by single-crystal X-ray diffraction and large-angle X-ray scattering (LAXS), respectively. The acetylacetone is deprotonated and acts as a bidentate anionic ligand (acac-) in the solid Pb(acac)2 compound. The lead(II) ion binds four oxygen atoms strongly in a nearly flat pyramidal configuration with Pb-O bond lengths in the range 2.32-2.37 A, and additionally three oxygens from neighboring complexes at 3.01-3.26 A. Acetylacetone acts as a solvent (Hacac) at dissolution of lead(II) trifluoromethanesulfonate forming a pentasolvate with a mean Pb-O bond distance of 2.724(5) A. The 6s2 lone electron pair on the lead(II) ion becomes stereochemically active in the crystalline acetylacetonate complex, while it is inactive in the solvate in solution. The solution was also analysed using IR and 1H NMR spectroscopy.  相似文献   

3.
The structure of the solvated lanthanum(III) ion has been determined in aqueous, dimethyl sulfoxide, and N,N'-dimethylpropyleneurea solution by means of the EXAFS and large-angle X-ray scattering (LAXS) techniques. The close agreement between the EXAFS spectra of solid nonaaqualanthanum(III) trifluoromethanesulfonate and of an aqueous lanthanum(III) perchlorate solution shows that the hydrated lanthanum(III) ion in aqueous solution most probably has the same structure as in the solid, i.e., nine water molecules coordinated in a tricapped trigonal prismatic configuration. The data analysis from EXAFS and LAXS measurements of the aqueous solution resulted in the La-O bond distances 2.52(2) and 2.65(3) A to the water molecules in the prism and the capping positions, respectively. The LAXS study shows a second hydration sphere consistent with approximately 18 water molecules at 4.63(2) A. The EXAFS spectra of solid octakis(dimethyl sulfoxide)lanthanum(III) trifluoromethanesulfonate and a dimethyl sulfoxide solution of this salt are also similar. The data analysis of EXAFS and LAXS measurements assuming eight-coordination around lanthanum yielded an La-O bond distance of 2.50(2) A, and an La...S distance of 3.70(3) A, giving an La-O-S angle of 133(2) degrees. The EXAFS data of an N,N'-dimethylpropyleneurea solution of lanthanum(III) trifluoromethanesulfonate gave the La-O bond distance 2.438(4) A and the La...C distance 3.41(2) A, which correspond to an La-O-C angle of 131(2) degrees. The La-O bond distance is consistent with seven-coordination around lanthanum, on the basis of the variation of the ionic radii of the lanthanum(III) ion with different coordination numbers.  相似文献   

4.
The structure of the hydrated and the dimethyl sulfoxide solvated rubidium ions in solution has been determined by means of large-angle X-ray scattering (LAXS) and extended X-ray absorption fine structure (EXAFS) studies. The models of the hydrated and dimethyl sulfoxide solvated rubidium ions fitting the experimental data best are square antiprisms with Rb-O bond distances of 2.98(2) and 2.98(3) A, respectively. The EXAFS data show a significant asymmetry in the Rb-O bond distance distribution with C(3) values of 0.0076 and 0.015 A(3), respectively. No second hydration sphere is observed around the hydrated rubidium ion. The dimethyl sulfoxide solvated rubidium ion displays a Rb-O-S bond angle of ca. 130 degrees, which is typical for a medium hard electron acceptor such as rubidium.  相似文献   

5.
The tetrameric hydrolysis products of zirconium(IV) and hafnium(IV), the zirconyl(IV) and hafnyl(IV) ions, [M(4)(OH)(8)(OH(2))(16)(8+)], often labelled MO(2+).5H(2)O, are in principle the only zirconium(IV) and hafnium(IV) species present in aqueous solution without stabilising ligands and pH larger than zero. These complexes are furthermore kinetically very stable and do not become protonated even after refluxing in concentrated acid for at least a week. The structures of these complexes have been determined in both solid state and aqueous solution by means of crystallography, EXAFS and large angle X-ray scattering (LAXS). Each metal ion in the [M(4)(OH)(8)(OH(2))(16)](8+) complex binds four hydroxide ions in double hydroxo bridges, and four water molecules terminally. The M-O bond distance to the hydroxide ions are markedly shorter, ca. 0.12 A, than to the water molecules. The hydrated zirconium(IV) and hafnium(IV) ions only exist in extremely acidic aqueous solution due to their very strong tendency to hydrolyse. The structure of the hydrated zirconium(IV) and hafnium(IV) ions has been determined in concentrated aqueous perchloric acid by means of EXAFS, with both ions being eight-coordinated, most probably in square antiprismatic fashion, with mean Zr-O and Hf-O bond distances of 2.187(3) and 2.160(12) A, respectively. The dimethyl sulfoxide solvated zirconium(IV) and hafnium(IV) ions are square antiprismatic in both solid state and solution, with mean Zr-O and Hf-O bond distances of 2.193(1) and 2.181(6) A, respectively, in the solid state. Hafnium(IV) chloride does not dissociate in N,N'-dimethylpropyleneurea, dmpu, a solvent with good solvating properties but with a somewhat lower permittivity (epsilon= 36.1) than dimethyl sulfoxide (epsilon= 46.4), and an octahedral HfCl(4)(dmpu)(2) complex is formed.  相似文献   

6.
The structure of the hydrated calcium(II) ion in aqueous solution has been studied by means of extended X-ray absorption fine structure spectroscopy (EXAFS), large-angle X-ray scattering (LAXS), and molecular dynamics (MD) methods. The EXAFS data displayed a broad and asymmetric distribution of the Ca-O bond distances with the centroid at 2.46(2) A. LAXS studies on four aqueous calcium halide solutions (1.5-2 mol dm(-)(3)) gave a mean Ca-O bond distance of 2.46(1) A. This is consistent with a hydration number of 8 determined from correlations between mean distances and coordination numbers from crystal structures. The LAXS studies showed a second coordination sphere with a mean Ca.O(II) distance of 4.58(5) A, and for the hydrated halide ions the distances Cl.O 3.25(1) A, Br.O 3.36(1) A, and I.O 3.61(1) A were obtained. Molecular dynamics simulations of CaCl(2)(aq) were performed using three different Ca(2+)-OH(2) pair potentials. The potential from the GROMOS program gave results in agreement with experiments, i.e., a coordination number of 8 and an average Ca-O distance of 2.46 A, and was used for further comparisons. Theoretical EXAFS oscillations were computed for individual MD snapshots and showed very large variations, though the simulated average spectrum from 2000 snapshots gave satisfactory agreement with the experimental EXAFS spectra. The effect of thermal motions of the coordinated atoms is inherent in the MD simulation method. Thermal disorder parameters evaluated from simulated spatial atom distribution functions of the oxygen atoms coordinated to the calcium ion were in close agreement with those from the current LAXS and EXAFS analyses. The combined results are consistent with a root-mean-square displacement from the mean Ca-O distance of 0.09(2) A in aqueous solution at 300 K.  相似文献   

7.
The structure of the solvated bismuth(III) ion in aqueous, dimethyl sulfoxide, N,N'-dimethylpropyleneurea, and N,N-dimethylthioformamide solution has been studied by means of EXAFS and large-angle X-ray scattering (LAXS). The crystal structures of the solid compounds octakis(dimethyl sulfoxide)bismuth(III) perchlorate, [Bi(OS(CH3)2)8](ClO4)3, hexakis(N,N'-dimethylpropyleneurea)bismuth(III) perchlorate, [Bi(OCN2(CH2)3(CH3)2)6](ClO4)3, and nonaaquabismuth(III) trifluoromethanesulfonate, [Bi(H2O)9](CF3SO3)3 (redetermination), have been determined. The aqueous solutions must be strongly acidic, since the hydrated bismuth(III) ion starts to hydrolyze into Bi6O4(OH)4(6+) complexes already at an excess of strong acid at 1.0 mol.dm-3. For very acidic aqueous perchlorate solutions, the LAXS and EXAFS data gave a satisfactory fit for eight-coordination of the bismuth(III) ion, with a mean Bi-O bond distance of 2.41(1) A. The crystal structure of octakis(dimethyl sulfoxide)bismuth(III) perchlorate shows that the bismuth(III) ion coordinates eight dimethyl sulfoxide molecules via the oxygen atoms in a distorted square antiprismatic configuration. The mean Bi-O bond distance is 2.43 A and the mean Bi...S distance 3.56 A. For the dimethyl sulfoxide solution, the corresponding mean distances were found to be 2.411(6) and 3.535(12) A. The N,N'-dimethylpropyleneurea-solvated bismuth(III) ion is octahedrally coordinated in both solid state and solution with the Bi-O bond distances of 2.324(5) and 2.322(3) A, respectively. The bismuth(III) ion is six-coordinated in the sulfur donor solvent N,N-dimethylthioformamide with a mean Bi-S bond distance of 2.794(8) A. A comparison with the structure of the solvated lanthanum(III) ion shows that the bismuth(III) ion is smaller for all coordination numbers. New effective ionic radii for the bismuth(III) ion in different coordination numbers are proposed, based on results in this study and in the literature.  相似文献   

8.
The hydrated and dimethyl sulfoxide and N,N'-dimethylpropyleneurea solvated silver(I) ions have been characterized structurally in solution by means of extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS). The coordination chemistry of the hydrated and dimethyl sulfoxide solvated silver(I) ions has been reevaluated because of different results from the EXAFS and LAXS methods reported previously. Consistent results are obtained with a linearly distorted tetrahedral model with two short and approximately two long Ag-O bond distances: mean Ag-O bond lengths of 2.32(1) and 2.54(1) A for the hydrate, 2.31(1) and 2.48(2) A for the dimethyl sulfoxide solvate, and 2.31(1) and 2.54(2) A for the N,N'-dimethylpropyleneurea solvate, in solution.  相似文献   

9.
The solvation of the mercury(II) ion in solvents with different solvation properties, water, dimethylsulfoxide, N,N-dimethylthioformamide, and liquid ammonia, has been studied by means of (199)Hg NMR. The (199)Hg chemical shift shows a pronounced dependence on the coordination number of the mercury(II) ion in the solvates resulting in a difference of over 1200 ppm between basically tetrahedral and octahedral complexes. The chemical shifts can furthermore be associated with electron-pair donor properties of the solvents. The spin-lattice relaxation times of the (199)Hg nucleus in the solvates have been measured at different applied magnetic fields, concentrations, temperatures, and isotope substitutions. Possible mechanisms for the (199)Hg relaxation were proposed and the chemical shielding anisotropy in the solvates has been estimated. The (199)Hg relaxation rates and the anisotropy are correlated with the structure of the solvate complexes in solution obtained from recent LAXS and EXAFS studies.  相似文献   

10.
Even though lead is a well-known toxicant widely scattered throughout the world since antiquity, its chemistry is poorly documented at the molecular level. Here we investigate the hydration of the Pb(2+) ion by means of first-principles molecular dynamics (Car-Parrinello molecular dynamics, CPMD). We found that the hydrated cation is heptacoordinated in a dynamically holodirected arrangement roughly corresponding to a fluxional distorted pentagonal bipyramid. The time-averaged Pb-O bond length is especially large and amounts to 2.70 A with an associated root-mean-square deviation of 0.26 A. This results from a dynamic exchange between short (<2.6 A), intermediate (2.6-3.0 A) and long (>3.0 A) Pb-O bonds. The latter very long Pb-O distance implies that the determination of the coordination number n(c) from experimental work may not necessarily yield values directly comparable to the theoretical value of n(c)=7, since not all experimental techniques would recognize such a long distance as a bond to the metal cation. Pronounced disorders are evidenced in the second shell, characteristic of a chaotropic cation, and exchanges between the first and second shells cannot be excluded on a timescale of a few tens of picoseconds.  相似文献   

11.
The coordination chemistry of solvated Ag(I) and Au(I) ions has been studied in some of the most strong electron-pair donor solvents, liquid and aqueous ammonia, and the P donor solvents triethyl, tri-n-butyl, and triphenyl phosphite and tri-n-butylphosphine. The solvated Ag(I) ions have been characterized in solution by means of extended X-ray absorption fine structure (EXAFS), Raman, and (107)Ag NMR spectroscopy and the solid solvates by means of thermogravimetry and EXAFS and Raman spectroscopy. The Ag(I) ion is two- and three-coordinated in aqueous and liquid ammonia solutions with mean Ag-N bond distances of 2.15(1) and 2.26(1) A, respectively. The crystal structure of [Ag(NH3)3]ClO4.0.47 NH3 (1) reveals a regular trigonal-coplanar coordination around the Ag(I) ion with Ag-N bond distances of 2.263(6) A and a Ag...Ag distance of 3.278(2) A separating the complexes. The decomposition products of 1 have been analyzed, and one of them, [Ag(NH3)2]ClO4, has been structurally characterized by means of EXAFS, showing [Ag(NH3)2] units connected into chains by double O bridges from perchlorate ions; the Ag...Ag distance is 3.01(1) A. The linear bisamminegold(I) complex, [Au(NH3)2]+, is predominant in both liquid and aqueous ammonia solutions, as well as in solid [Au(NH3)2]BF4, with Au-N bond distances of 2.022(5), 2.025(5), and 2.026(7) A, respectively. The solvated Ag(I) ions are three-coordinated, most probably in triangular fashion, in the P donor solvents with mean Ag-P bond distances of 2.48-2.53 A. The Au(I) ions are three-coordinated in triethyl phosphite and tri-n-butylphosphine solutions with mean Au-P bond distances of 2.37(1) and 2.40(1) A, respectively.  相似文献   

12.
The ammonia solvated mercury(II) ion has been structurally characterized in solution by means of EXAFS, (199)Hg NMR, and Raman spectroscopy and in solid solvates by combining results from X-ray single crystal and powder diffraction, thermogravimetry, differential scanning calorimetry, EXAFS, and Raman spectroscopy. Crystalline tetraamminemercury(II) perchlorate, [Hg(NH3)4](ClO4)2, precipitates from both liquid ammonia and aqueous ammonia solution, containing tetraamminemercury(II) complexes. The orthorhombic space group ( Pnma) imposes C s symmetry on the tetraamminemercury(II) complexes, which is lost at a phase transition at about 220 K. The Hg-N bond distances are 2.175(14), 2.255(16), and 2 x 2.277(9) A, with a wide N-Hg-N angle between the two shortest Hg-N bonds, 122.1(7) degrees , at ambient temperature. A similar distorted tetrahedral coordination geometry is maintained in liquid ammonia and aqueous ammonia solutions with the mean Hg-N bond distances 2.225(12) and 2.226(6) A, respectively. When heated to 400 K the solid tetraamminemercury(II) perchlorate decomposes to diamminemercury(II) perchlorate, [Hg(NH3)2](ClO4)2, with the mean Hg-N bond distance 2.055(6) A in a linear N-Hg-N unit. The mercury atoms in the latter compound form a tetrahedral network, connected by perchlorate oxygen atoms, with the closest Hg...Hg distance being 3.420(3) A. The preferential solvation and coordination changes of the mercury(II) ion in aqueous ammonia, by varying the total NH 3:Hg(II) mole ratio from 0 to 130, were followed by (199)Hg NMR. Solid [Hg(NH 3)4](ClO4)2 precipitates while [Hg(H2O)6](2+) ions remain in solution at mole ratios below 3-4, while at high mole ratios, [Hg(NH3)4](2+) complexes dominate in solution. The principal bands in the vibrational spectrum of the [Hg(NH3)4](2+) complex have been assigned.  相似文献   

13.
The structure of the solvated mercury(II) ion in water and dimethyl sulfoxide has been studied by means of large-angle X-ray scattering (LAXS) and extended X-ray absorption fine structure (EXAFS) techniques. The distribution of the Hg-O distances is unusually wide and asymmetric in both solvents. In aqueous solution, hexahydrated [Hg(OH(2))(6)](2+) ions in a distorted octahedral configuration, with the centroid of the Hg-O distance at 2.38(1) A, are surrounded by a diffuse second hydration sphere with HgO(II) distances of 4.20(2) A. In dimethyl sulfoxide, the six Hg-O and HgS distances of the hexasolvated [Hg{OS(CH(3))(2)}(6)](2+) complex are centered around 2.38(1) and 3.45(2) A, respectively. The crystal structure of hexakis(pyridine 1-oxide)mercury(II) perchlorate has been redetermined. The space group R(-)3 implies six equal Hg-O distances of 2.3416(7) A for the [Hg(ONC(5)H(5))(6)](2+) complex at 100 K. However, EXAFS studies of this compound, and of the solids hexaaquamercury(II) perchlorate and hexakis(dimethyl sulfoxide)mercury(II) trifluoromethanesulfonate, also with six equidistant Hg-O bonds according to crystallographic results, reveal in all cases strongly asymmetric Hg-O distance distributions. Vibronic coupling of valence states in a so-called pseudo-Jahn-Teller effect probably induces the distorted configurations.  相似文献   

14.
The structures of the solvated zinc ion and the solvated zinc–iodide complexes in methanol solution have been determined by EXAFS. The zinc ion is six-coordinated in an octahedral fashion with a mean Zn–O bond distance of 2.071(4) Å. According to the stability constants of the zinc–iodide system in methanol solution the first complex, ZnI+, is suppressed, which may indicate that a coordination change takes place at this step. On the other hand, the second complex, ZnI2, predominates at excess of iodide. The methanol solvated ZnI2 complex has a tetrahedral structure with mean Zn–I and Zn–O bond distances of 2.55(1) and 1.99(1) Å, respectively. The mean Zn–I bond distance in a solution containing a maximal content of ZnI+, ca. 12%, strongly indicates that the first complex also has a tetrahedral structure.  相似文献   

15.
A study of the hydration of the alkali metal ions in aqueous solution   总被引:1,自引:0,他引:1  
The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O-D stretching bands of partially deuterated water bound to these metal ions and the O-D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M-O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M-O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M-O bond distances and coordination numbers also for the alkali metal ions even though the M-O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M-O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) ?, which corresponds to six-, seven-, eight- and eight-coordination. These coordination numbers are supported by the linear relationship of the hydration enthalpies and the M-O bond distances. This correlation indicates that the hydrated lithium ion is four-coordinate in aqueous solution. New ionic radii are proposed for four- and six-coordinate lithium(I), 0.60 and 0.79 ?, respectively, as well as for five- and six-coordinate sodium(I), 1.02 and 1.07 ?, respectively. The ionic radii for six- and seven-coordinate K(+), 1.38 and 1.46 ?, respectively, and eight-coordinate Rb(+) and Cs(+), 1.64 and 1.73 ?, respectively, are confirmed from previous studies. The M-O bond distances in dimethyl sulfoxide solvated sodium, potassium, rubidium and cesium ions in solution are very similar to those observed in aqueous solution.  相似文献   

16.
Abstract

Morellic acid, gambogic acid and guttiferic acid are related naturally-occurring xanthone pigments that yield X-ray quality crystals only from solvents like pyridine, dimethylformamide (dmf) and dimethyl sulfoxide (dmso). The structures of four of these crystals have been determined and are found to contain solvents of crystallization. The solvents hydrogen bond to the carboxyl groups with O—H…O/N motifs previously seen in other carboxylic acids. Distinctive, however, is the presence of an extended though somewhat diffuse array of C—H…O hydrogen bonds that aggregates the entire solute-solvent assemblage in a multi-point manner. Pyridine and dmf are able to mimic each other with respect to their hydrogen bond donating and accepting characteristics and in this respect play equivalent roles in their solvates with morellic acid and gambogic acid. Dmso is seen to self-associate in its guttiferic acid solvate. It is possible that these solvents with multiple hydrogen bonding donor and acceptor capability can act as hydrogen bond nucleators, providing just enough rigidity to the solutes to ensure crystallization.  相似文献   

17.
The structures of the hydrated scandium(III) ion and of the hydrated dimeric hydrolysis complex, [Sc2(mu-OH)2]4+, in acidic aqueous solutions have been characterized by X-ray absorption fine structure (XAFS) and large-angle X-ray scattering (LAXS) methods. Comparisons with crystalline reference compounds containing hydrated scandium(III) ions in well characterized six-, seven- and eight-coordinated polyhedra have been used to evaluate the coordination numbers and configurations in aqueous solution. In strongly acidic aqueous solution the structure of the hydrated scandium(III) ion is found to be similar to that of the eight-coordinated scandium(III) ion with distorted bicapped trigonal prismatic coordinating geometry in the crystalline [Sc(H2O)(8.0)](CF3SO3)3 compound. The EXAFS data reveal for the solution, as for the solid, a mean Sc-O bond distance of 2.17(1) Angstrom to six strongly bound prism water molecules, 2.32(4) Angstrom to one capping position, with possibly another capping position at about 2.5 Angstrom. The LAXS study supports this structural model and shows furthermore a second hydration sphere with approximately 12 water molecules at a mean Sc...O(II) distance of 4.27(3) Angstrom. In less acidic concentrated scandium(III) aqueous solutions, the dimeric hydrolysis product, [Sc2(mu-OH)2(H2O)10]4+, is the predominating species with seven-coordinated scandium(III) ions in a double hydroxo bridge and five terminal water molecules at a mean Sc-O bond distance of 2.145 Angstrom. Hexahydrated scandium(III) ions are found in the crystal structure of the double salt [Sc(H2O)6][Sc(CH3SO3)6], which crystallizes in the trigonal space group R3[combining macron] with Z = 6 and the unit cell dimensions a = 14.019(2) and c = 25.3805(5) Angstrom. The Sc-O distances in the two crystallographically unique, but nearly identical, [Sc(H2O)6]3+ entities (both with 3[combining macron] imposed crystallographic symmetry) are 2.085(6) and 2.086(5) Angstrom, while the mean Sc-O distance in the near octahedral [Sc(OSO2CH3)6]3- entities (with three-fold symmetry) is 2.078 Angstrom.  相似文献   

18.
X-ray absorption fine structure (XAFS) measurements have been performed at -50 degrees C on a 0.4 mol dm(-)(3) copper(II) nitrate solution in liquid ammonia. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination number and bond distances for the solvated copper(II) ion in solution. The equatorial ammonia nitrogens are located 2.00 ? from the copper and the axial nitrogen 2.19 ? from the copper. However, it was not possible from the EXAFS analysis alone to conclude whether there was one or two axial nitrogens. Therefore, X-ray absorption near-edge structure (XANES) spectroscopy was combined with discrete variational Xalpha (DV-Xalpha) molecular orbital calculations for a series of five- and six-coordinated models to determine the coordination number and the geometry. The experimental XANES spectrum was best reproduced by a model where the copper(II) ion is pentacoordinated in liquid ammonia in a square pyramidal geometry with the copper(II) ion lifted above the average nitrogen plane.  相似文献   

19.
A structural investigation of complexes formed between the Pb(2+) ion and glutathione (GSH, denoted AH(3) in its triprotonated form), the most abundant nonprotein thiol in biological systems, was carried out for a series of aqueous solutions at pH 8.5 and C(Pb(2+)) = 10 mM and in the solid state. The Pb L(III)-edge extended X-ray absorption fine structure (EXAFS) oscillation for a solid compound with the empirical formula [Pb(AH(2))]ClO(4) was modeled with one Pb-S and two short Pb-O bond distances at 2.64 ± 0.04 and 2.28 ± 0.04 ?, respectively. In addition, Pb···Pb interactions at 4.15 ± 0.05 ? indicate dimeric species in a network where the thiolate group forms an asymmetrical bridge between two Pb(2+) ions. In aqueous solution at the mole ratio GSH/Pb(II) = 2.0 (C(Pb(2+)) = 10 mM, pH 8.5), lead(II) complexes with two thiolate ligands form, characterized by a ligand-to-metal charge-transfer band (LMCT) S(-) → Pb(2+) at 317 nm in the UV-vis spectrum and mean Pb-S and Pb-(N/O) bond distances of 2.65 ± 0.04 and 2.51 ± 0.04 ?, respectively, from a Pb L(III)-edge EXAFS spectrum. For solutions with higher mole ratios, GSH/Pb(II) ≥ 3.0, electrospray ionization mass spectroscopy spectra identified a triglutathionyllead(II) complex, for which Pb L(III)-edge EXAFS spectroscopy shows a mean Pb-S distance of 2.65 ± 0.04 ? in PbS(3) coordination, (207)Pb NMR spectroscopy displays a chemical shift of 2793 ppm, and in the UV-vis spectrum, an S(-) → Pb(2+) LMCT band appears at 335 nm. The complex persists at high excess of GSH and also at ~25 K in frozen glycerol (33%)/water glasses for GSH/Pb(II) mole ratios from 4.0 to 10 (C(Pb(2+)) = 10 mM) measured by Pb L(III)-edge EXAFS spectroscopy.  相似文献   

20.
The hydrated sulfate ion has been characterized in aqueous solution in structural and dynamic aspects using ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) simulation and large angle X-ray scattering (LAXS) methods. The LAXS data show an average coordination number of the sulfate ion of up to 12 water molecules bound through hydrogen bonding, while the QMCF MD simulation displays a wide range of coordination numbers between 8 and 14 with an average value of approximately 11. The Os...Ow distance cannot be distinguished from the Ow...Ow distance in the LAXS experiment; the weighted mean O...O distance is 2.880(10) A. In the simulation, the Os...Ow and Ow...Ow distances are found to be very similar, namely, 2.86 and 2.84 A, respectively. The S-Os bond and S...Ow distance have been determined by the LAXS experiment as 1.495(6) and 3.61(2) A, respectively, indicating an average nearly tetrahedral S-Os...Ow angle. The approximately 5% deviations of simulation distances (1.47 and 3.82 A) from the experimental ones can probably be ascribed to the neglect of correlation energy in the quantum mechanical method. The mean residence time of water ligands at O atoms, 2.57 ps, is longer than that in pure water, 1.7 ps, characterizing the sulfate ion as a weak structure maker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号