首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent molecular dynamics simulations of Sorin and Pande [J. Am. Chem. Soc. 128, 6316 (2006)] in explicit solvent found that helix formation of an alanine peptide is disfavored inside a nanotube relative to that in bulk solution. Here, we present a theory to quantitatively rationalize their simulation results. The basic idea is that the nonpolar inner surface of the nanotube creates a depletion layer and raises the activity of the confined water. The raised water activity, in turn, stabilizes the coil state through hydrogen bonding with the backbone amides and carbonyls. We account for the influence of water activity on helix formation within the Lifson-Roig theory. With physically reasonable parameters, the dependence of the helical content on the diameter of the nanotube obtained in the simulations is well reproduced.  相似文献   

2.
A molecular dynamics simulation of water molecules through a Au nanotube with a diameter of 20 A at bulk densities 0.8, 1, and 1.2 gcm(3) has been carried out. The water molecules inside a nanoscale tube, unlike those inside a bulk tube, have a confined effect. The interaction energy of the Au nanotube wall has a direct influence on the distribution of water molecules inside the Au tube in that the adsorption of the water molecules creates shell-like formations of water. Moreover, the high number of adsorbed molecules has already achieved saturation at the wall of the Au nanotube at three bulk densities. This work compares the distribution percentage profiles of hydrogen bonds for different regions inside the tube. The structural characteristics of water molecules inside the tube have also been studied. The results reveal that the numbers of hydrogen bonds per water molecule influence the orientational order parameter q. In addition, the phenomenon of a group of molecules bonded inside the tube can be observed as the number of hydrogen bonds increase.  相似文献   

3.
Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius.  相似文献   

4.
Phase-contrast transmission electron microscopy (PC-TEM) and quick freezing method have been combined to study the initial growing process of a self-assembled lipid nanotube in water. The PC-TEM enabled us to detect thin lamellar edge structure and the very fast growth of the newborn edge to a thin tube with high contrast. The thin tube acts as a core structure for further growth into thick complete lipid nanotube. The initially formed nanotube structure is denoted as a "core tube". The core tube has uniform wall structure that consists of five lamellar layers and the inner and outer diameters of the core tube are 130 and 180 nm, respectively. The evaluated lamellar spacing of 4.6 nm is well compatible with that measured by X-ray diffraction. We also discussed the molecular packing of the nanotube from the pitch angle determined by the PC-TEM images, X-ray diffraction pattern in wide-angle region, and IR spectroscopy. The subcell structure of the nanotube is assigned to an orthorhombic type. The twisting angle between the neighboring lipid molecules is determined as ca. 0.26 degrees for the first time; it is a crucial parameter for the formation of a lipid nanotube in chiral packing but has not been elucidated before.  相似文献   

5.
We investigated the local environment of water confined inside the hollow cylinder of lipid nanotubes (LNTs) by time-resolved fluorescent measurements and attenuated-total-reflectance infrared (ATR-IR) spectroscopy. The LNT was obtained by self-assembly of cardanyl glucosides in water at room temperature and had an open-ended cylindrical nanospace with a diameter of 10-15 nm, a length of 10-100 microm, and hydrophilic inner and outer surfaces. We introduced a fluorescent probe of 8-anilinonaphthalene-1-sulfonate into the confined water and observed an extremely slow dynamic Stokes shift with a correlation time of 1.26 ns, which was 2-3 orders of magnitude longer than that of bulk-phase water. From the peak shift of the fluorescent spectrum, the local solvent polarity (ET(30)) of the confined water was estimated as 50 kcal/mol, which is 20% lower than that in bulk water. ATR-IR measurements showed that the hydrogen-bond network of water inside the LNT was more developed than that in bulk water at room temperature, which is in contrast to the water in other self-assembled confined geometries, such as Aerosol-OT (AOT) reversed micelles.  相似文献   

6.
Recent studies of SWNT/polymer nanocomposites identify the large interfacial thermal resistance at nanotube/nanotube junctions as a primary cause for the only modest increases in thermal conductivity relative to the polymer matrix. To reduce this interfacial thermal resistance, we prepared a freestanding nanotube framework by removing the polymer matrix from a 1 wt % SWNT/PMMA composite by nitrogen gasification and then infiltrated it with epoxy resin and cured. The SWNT/epoxy composite made by this infiltration method has a micron‐scale, bicontinuous morphology and much improved thermal conductivity (220% relative to epoxy) due to the more effective heat transfer within the nanotube‐rich phase. By applying a linear mixing rule to the bicontinuous composite, we conclude that even at high loadings the nanotube framework more effectively transports phonons than well‐dispersed SWNT bundles. Contrary to the widely accepted approaches, these findings suggest that better thermal and electrical conductivities can be accomplished via heterogeneous distributions of SWNT in polymer matrices. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1513–1519, 2006  相似文献   

7.
While alkanes in solution exhibit predominantly extended conformations, nanoscale confinement of these chains within protein binding sites and synthetic receptors can significantly alter the conformer distribution. As a simple model for the effect of confinement on the conformation, we report molecular simulations of n-alkanes absorbed from a bulk solvent into narrow carbon nanotubes. We observe that confinement of butane, hexane, and tetracosane induces a trans to gauche conformational redistribution. Moreover, confined hexane and tetracosane exhibit cooperative interactions between neighboring dihedral angles, which promote a helical gauche conformation for the portions of the chain within the nanotube. Hexane absorbed into the nanotube from water or benzene exhibits essentially the same conformation regardless of the bulk solvent. The PMF between the nanotube and hexane along the central nanotube axis finds that nanotube absorption is favorable from aqueous solution but neutral from benzene. The interaction between hexane and the nanotube in water is dominated by the direct interaction between the alkane and the nanotube and weakly opposed by indirect water-mediated forces. In benzene, however, the direct alkane/nanotube interaction is effectively balanced by the indirect benzene-mediated interaction. Our simulations in water stand in difference to standard interpretations of the hydrophobic effect, which posit that the attraction between non-polar species in water is driven by their mutual insolubility.  相似文献   

8.
Interaction of α-Synuclein (αS) with biological lipids is crucial for the onset of its fibrillation at the cell membrane/water interface. Probed herein is the interaction of αS with membrane-mimicking lipid monolayer/water interfaces. The results depict that αS interacts negligibly with zwitterionic lipids, but strongly affects the pristine air/water and charged lipid/water interfaces by perturbing the structure and orientation of the interfacial water. The net negative αS (−9 in bulk water; pH 7.4) reorients the water as hydrogen-up (H-up) at the air/water interface, and electrostatically interacts with positively charged lipids, making the interface nearly net neutral. αS also interacts with negatively charged lipids: the net H-up orientation of the interfacial water decreases at the anionic lipid/water interface, revealing a domain-specific interaction of net negative αS with the negatively charged lipids at the membrane surface.  相似文献   

9.
The effect of pyrene distribution within pyrene‐functionalized random and block copolymers on noncovalent polymer/single‐walled carbon nanotube (SWNT) interactions was investigated. The block copolymers served as superior solubilizing agents in comparison with the random copolymers. Also, increasing the pyrene content within a polymer, while a constant molecular weight was maintained, improved SWNT solubility and therefore had to result in stronger polymer–nanotube interactions. However, increasing the length of the pyrene‐containing block diminished nanotube solubility, likely because of a lower number of polymer chains that were capable of binding to the nanotube surface. Atomic force microscopy and transmission electron microscopy indicated that the polymer–SWNT interactions were capable of partially debundling the nanotubes into individual solvated structures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1941–1951, 2006  相似文献   

10.
For nearly the past two decades, significant effort has been devoted to pursuing an understanding of the glass transition temperature and associated dynamics of polymers confined to the nanoscale. Without question, we know more about the glassy properties of confined polymers today than we knew two decades ago or even a decade ago. Much of our understanding has been obtained via studies on thin polymer films, as they are facile to process and are of substantial technological importance. Nevertheless, studies on polymers confined to other geometries are becoming increasingly more important as we pursue questions difficult to address using thin films and as technology demands the use of confined polymers beyond thin films. In this feature article, we highlight the impact of nanoscale confinement on the glassy properties of polymer nanoparticles. Although the emphasis is placed on contributions from our work, a discussion of the related literature is also presented. Our aim is to elucidate commonalities or fundamental differences in the deviations of glassy properties from the bulk for polymers confined to different geometries. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

11.
Coaxial-electrospinning (ES) was used as a new method to fabricate one-dimensional (1D) confinements for studying confined crystallization of poly(ethylene glycol) (PEG). A series of core–sheath ultrafine fibers with PEG as the core and cellulose acetate as the sheath were obtained by coaxial ES. It was found that the uniform core–sheath ultrafine fibers could be fabricated and a (1D) confinement environment, a nanotube with a diameter from 68 to 860 nm, could be obtained by coaxial-ES. When the confinement dimension decreased to be smaller than 120 nm in diameter, the melt temperature (Tm), the crystallization temperature (Tc), the crystallinity (Xm), and the crystal sizes of the PEG were much smaller than those of bulk PEG and when the nanotube was larger than 200 nm in diameter, the Tm, Tc, Xm, and the crystallite sizes of the PEG were close to those of bulk PEG, which suggested that the crystallization of the PEG was influenced by the confinement dimension. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

12.
We present a simple one-dimensional lattice gas model, which describes very well the equilibrium and kinetic behaviors of water confined in a thin carbon nanotube found in an atomistic molecular dynamics simulation [G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London), 414, 188 (2001)]. The model parameters correspond to various physical interactions and can be calculated or estimated by using statistical mechanics. Then, the roles of all interactions in the water filling, emptying, and transporting processes are clearly understood. Our results indicate that the interaction from the water molecules outside the nanotube plays a key role in these processes and the interaction can be simply treated as an average effect of the bulk water.  相似文献   

13.
The mechanical properties and morphology of multiwall carbon nanotube (MWNT)/polypropylene (PP) nanocomposites were studied as a function of nanotube orientation and concentration. Through melt mixing followed by melt drawing, using a twin screw mini‐extruder with a specially designed winding apparatus, the dispersion and orientation of MWNTs was optimized in PP. Tensile tests showed a 32% increase in toughness for a 0.25 wt % MWNT in PP (over pure PP). Moreover, modulus increased by 138% with 0.25 wt % MWNTs. Transmission electron microscopy and scanning electron microscopy demonstrated qualitative nanotube dispersion and orientation. Wide angle X‐ray diffraction was used to study crystal morphology and orientation by calculating the Herman's orientation factor for the composites as function of nanotube loading and orientation. The addition of nanotubes to oriented samples causes the crystalline morphology to shift from α and mesophase to only α phase. Furthermore, the addition of nanotubes (without orientation) was found to cause isotropization of the PP crystal, and drawing was shown to improve crystal orientation through the orientation factor. In addition, differential scanning caloriometry qualitatively revealed little change in overall crystallinity. In conclusion, this work has shown that melt mixing coupled with melt drawing has yielded MWNT/PP composites with a unique combination of strength and toughness suitable for advanced fiber applications, such as smart fibers and high‐performance fabrics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 864–878, 2006  相似文献   

14.
Unsymmetrical bolaamphiphiles, omega- [N-beta-D-glucopyranosylcarbamoyl] alkanoic acids, with even-numbered oligomethylene chains (12, 14, 16, 18, and 20 carbons) self-assembled in water to form lipid nano- and microtubes. The tubular assemblies were separated by centrifugation and examined by transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to study the molecular packing within the tubular membranes. The nanotubes encapsulated the staining reagent phosphotungstate, which revealed them to be hollow cylinders up to several hundred micrometers long with 30-43-nm outer diameters and 14-29-nm inner diameters. By comparing the membrane stacking periodicity obtained from powder X-ray diffraction analysis of the dehydrated tubes with the molecular packing within single crystals, we found that the nanotubes consist of an unsymmetrical monolayer lipid membrane (MLM) in which the molecules are packed in a parallel fashion. This suggests that the inner surface of the nanotubes is covered with carboxy headgroups and the outer surface with 1-glucosamide headgroups. The inner diameters of the lipid nanotubes could be controlled in the range 17.7-22.2 nm in steps of approximately 1.5 nm/two carbons by varying the oligomethylene spacer length. The microtubes had three types of molecular arrangements. The first type was a symmetrical MLM in which the molecules were packed in an antiparallel fashion. The other two types had unsymmetrical MLM stacking with head-to-head and head-to-tail motifs. Increasing the number of oligomethylene spacers stabilized the unsymmetrical MLM structure in both nano- and microtubes.  相似文献   

15.
We study the effect of confinement in the dynamical behavior of a core-softened fluid. The fluid is modeled as a two length scales potential. This potential in the bulk reproduces the anomalous behavior observed in the density and in the diffusion of liquid water. A series of NpT molecular dynamics simulations for this two length scales fluid confined in a nanotube were performed. We obtain that the diffusion coefficient increases with the increase of the nanotube radius for wide channels as expected for normal fluids. However, for narrow channels, the confinement shows an enhancement in the diffusion coefficient when the nanotube radius decreases. This behavior, observed for water, is explained in the framework of the two length scales potential.  相似文献   

16.
Using state-of-the-art density functional theoretical calculations, we have modelled a facetted CdS nanotube (NT) catalyst for photocatalytic water splitting. The overall photocatalytic activity of the CdS photocatalyst has been predicted based on the electronic structures, band edge alignment, and overpotential calculations. For comparisons, we have also investigated the water splitting process over bulk CdS. The band edge alignment along with the oxygen evolution reaction/hydrogen evolution reaction (OER/HER) mechanism studies help us find out the effective overpotential for the overall water splitting on these surfaces. Our study shows that the CdS NT has a highly stabilized valence band edge compared to that of bulk CdS owing to strong p–d mixing. The highly stabilized valence band edge is important for the hole-transfer process and reduces the risk of electron-hole recombination. CdS nanotube requires less overpotential for water oxidation reaction than the bulk CdS. Our findings suggest that the efficiency of the water oxidation/reduction process further improves in CdS as we reduce its dimensionality, that is going from bulk CdS to one-dimensional nanotube. Furthermore, the stabilized valence band edge of CdS nanotube also improves the photostability of CdS, which is a problem for bulk CdS.  相似文献   

17.
Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular‐level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two‐dimensional heterodyne‐detected vibrational sum frequency generation (2D HD‐VSFG) study of the OH stretch of HOD at charged lipid interfaces, which shows that the hydrogen bond dynamics of interfacial water differ drastically, depending on the lipids. The data indicate that the spectral diffusion of the OH stretch at a positively charged lipid interface is dominated by the ultrafast (<~100 fs) component, followed by the minor sub‐picosecond slow dynamics, while the dynamics at a negatively charged lipid interface exhibit sub‐picosecond dynamics almost exclusively, implying that fast hydrogen bond fluctuation is prohibited. These results reveal that the ultrafast hydrogen bond dynamics at the positively charged lipid–water interface are attributable to the bulk‐like property of interfacial water, whereas the slow dynamics at the negatively charged lipid interface are due to bound water, which is hydrogen‐bonded to the hydrophilic head group.  相似文献   

18.
Phase transition of water confined in nanospaces with charged inner-surfaces was investigated by vibrational spectroscopy. Aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles give a series of spherical nanospaces with controlled inner-radius (Rw) with nanometer-scale precision. Successive spectroscopic measurements of the confined water with decreasing temperature revealed that the water freezes to metastable cubic ice (Ic) coexisting with super-cooled water or unstable amorphous ice at the Rw ranging from 1.0 to 2.0 nm. When Rw exceeded 2.0 nm, stable hexagonal ice (Ih) dominated. The drastic change of the dominant ice structure with the increase of 1 nm in Rw shows that the thickness of water layers affected by the inner surface can be estimated to be ~1 nm, where three or four layers of water hydrated to the surface. It is worth noting that the clear phase transition behavior of the confined water vanishes at Rw = 1.2 nm and that the gradual formation of Ic and coexistence of super-cooled water or glassy state of water are detected. The range of the effective interaction between interfacial water and the charged inner surfaces and the mechanism of the extremely slow phase transition were also discussed.  相似文献   

19.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   

20.
A synthetic route for the preparation of symmetrical and unsymmetrical archaeal tetraether-like analogues has been described. The syntheses are based upon the elaboration of hemimacrocyclic tetraether lipid cores from versatile building blocks followed by simultaneous or sequential introduction of polar head groups. Functionalizations of the tetraether lipids with neutral lactose or phosphatidylcholine polar heads and cationic glycine betaine moieties were envisaged both to increase membrane stability and to exhibit interactions with charged nucleic acids. Additionally, mannose and lactose triantennary clusters designed as multivalent ligands for selective interaction with lectin-type receptors were also efficiently synthesized for active cell/tissue targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号