首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular geometry of tetrahydrothiophene (THT) was quantum mechanically calculated using the split valence 6-31G** basis set. Electron correlation energy has been computed employing MP2 method. The molecule showed a twist form puckered structure with a twist torsion angle of 13 degrees and has a total energy of -347,877.514 kcal/mol of which a 436.715 kcal/mol electron correlation energy. The envelope form of the molecule showed an inter-plane angle of 22 degrees and has a total energy of -347,874.430 kcal/mol involving -436.558 kcal/mol electron correlation energy. The normal coordinates of the molecule were theoretically analyzed and the fundamental vibrational frequencies were calculated. The IR and laser Raman spectra of THT molecule was measured. All the observed vibrational bands including combination bands and overtones were assigned to normal modes with the aid of the potential energy distribution values obtained from normal coordinate calculations. The molecular force field was determined by refining the initial set of force constants using the least square fit method instead of using the less accurate scaling factor methods. The determined molecular force field has produced simulated frequencies which best match the observed values. The lowest-energy modes of vibration were two molecular out-of-plane deformations, observed at 114 and 166 cm(-1). The barrier of ring twisting estimated from the observed ring out-of-plane vibrational mode at 114 cm(-1) was estimated.  相似文献   

2.
Molecular structure and vibrational frequencies of carbamoyl azide NH2CO-NNN have been investigated with ab initio and density functional theory (DFT) methods. The molecular geometries for all the possible conformers of the molecule were optimized using DFT-B3LYP, DFT-BLYP and MP2 applying the standard 6-311++G** basis set. From the calculations, the molecule was predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of about 7.91-9.10 kcal/mol depending on the level of theory applied. The vibrational frequencies and the corresponding vibrational assignments of carbamoyl azide in Cs symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule in the cis conformation were plotted. Observed frequencies for normal modes were compare with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G** basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.  相似文献   

3.
Harmonic force constants, in-plane vibrational frequencies, and in-plane vibrational modes of cytosine were calculated by an ab initio Hartree—Fock SCF MO method. The force contants were calculated by the use of an energy gardient method with the STO-3G basis set, and then they were corrected into “4-31G force constants” by the scaling factors given by us previously for the case of uracil. The corrected set of force constants can produce a calculated vibrational spectra of cytosine and cytosine-1,amino-d3, that can be well corrected with the observed Raman and infrared spectra of these compounds, with little ambiguity. Thus, the assignments of all the in-plane vibrations are now practically established. The calculated vibrational modes, in addition, can account for the recently published resonance Raman effects of cytosine residue.  相似文献   

4.
The Raman (including FT-Raman) and Fourier transform infrared (FTIR) spectra of 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 2-hydroxybenzaldehyde, 2-hydroxy-3-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 1,2-dihydroxy-3-methoxybenzene, 2,5-dihydroxytoluene, 2,6-dihydroxytoluene, pentachlorophenol and pentabromophenol were measured. Raman polarisation measurements were made wherever possible. A normal coordinate treatment was carried out for both the in-plane and out-of-plane vibrations of these molecules using a 123-parameter-modified valence force field. An overlay least-squares technique was employed to refine the force constants using 347 frequencies of 10 molecules. The reliability of these force constants was tested by making a zero-order calculation for 10 related molecules. Unambiguous vibrational assignments of all the fundamentals were made using the potential energy distributions and eigenvectors.  相似文献   

5.
Infrared and Raman spectra of protoporphyrin IX were recorded. DFT quantum chemical calculations were performed. Optimised molecular geometry, electric charge distribution, vibrational force constants were computed. The normal coordinate analysis and the scaling of the force constants yielded all the necessary data for the simulation of the infrared and Raman spectra and the potential energy distribution calculations. The result was the interpretation of all vibrational modes of the molecule. Conclusions were drawn from the difficulties arisen during the assignment of the vibrational spectra of such large molecules.  相似文献   

6.
Theoretical investigations of three equilibrium structures and two associated isomerization reactions of the GeCH(2) - HGeCH - H(2)GeC system have been systematically carried out. This research employed ab initio self-consistent-field (SCF), coupled cluster (CC) with single and double excitations (CCSD), and CCSD with perturbative triple excitations [CCSD(T)] wave functions and a wide variety of correlation-consistent polarized valence cc-pVXZ and cc-pVXZ-DK (where X = D, T, Q) basis sets. For each structure, the total energy, geometry, dipole moment, harmonic vibrational frequencies, and infrared intensities are predicted. Complete active space SCF (CASSCF) wave functions are used to analyze the effects of correlation on physical properties and energetics. For each of the equilibrium structures, vibrational second-order perturbation theory (VPT2) has been utilized to obtain the zero-point vibration corrected rotational constants, centrifugal distortion constants, and fundamental vibrational frequencies. The predicted rotational constants and anharmonic vibrational frequencies for 1-germavinylidene are in good agreement with available experimental observations. Extensive focal point analyses, including CCSDT and CCSDT(Q) energies and basis sets up to quintuple zeta, are used to obtain complete basis set (CBS) limit energies. At all levels of theory employed in this study, the global minimum of the GeCH(2) potential energy surface (PES) is confirmed to be 1-germavinylidene (GeCH(2), 1). The second isomer, germyne (HGeCH, 2) is predicted to lie 40.4(41.1) ± 0.3 kcal mol(-1) above the global minimum, while the third isomer, 2-germavinylidene (H(2)GeC, 3) is located 92.3(92.7) ± 0.3 kcal mol(-1) above the global minimum; the values in parentheses indicate core-valence and zero-point vibration energy (ZPVE) corrected energy differences. The barriers for the forward (1→2) and reverse (2→1) isomerization reactions between isomers 1 and 2 are 48.3(47.7) ± 0.3 kcal mol(-1) and 7.9(6.6) ± 0.3 kcal mol(-1), respectively. On the other hand, the barriers of the forward (2→3) and reverse (3→2) isomerization reactions between isomers 2 and 3 are predicted to be 55.2(53.2) ± 0.3 kcal mol(-1) and 3.3(1.6) ± 0.3 kcal mol(-1), respectively.  相似文献   

7.
The lowest-lying electronic singlet and triplet potential energy surfaces (PES) for the HNO-NOH system have been investigated employing high level ab initio quantum chemical methods. The reaction energies and barriers have been predicted for two isomerization and four dissociation reactions. Total energies are extrapolated to the complete basis set limit applying focal point analyses. Anharmonic zero-point vibrational energies, diagonal Born-Oppenheimer corrections, relativistic effects, and core correlation corrections are also taken into account. On the singlet PES, the (1)HNO → (1)NOH endothermicity including all corrections is predicted to be 42.23 ± 0.2 kcal mol(-1). For the barrierless decomposition of (1)HNO to H + NO, the dissociation energy is estimated to be 47.48 ± 0.2 kcal mol(-1). For (1)NOH → H + NO, the reaction endothermicity and barrier are 5.25 ± 0.2 and 7.88 ± 0.2 kcal mol(-1). On the triplet PES the reaction energy and barrier including all corrections are predicted to be 7.73 ± 0.2 and 39.31 ± 0.2 kcal mol(-1) for the isomerization reaction (3)HNO → (3)NOH. For the triplet dissociation reaction (to H + NO) the corresponding results are 29.03 ± 0.2 and 32.41 ± 0.2 kcal mol(-1). Analogous results are 21.30 ± 0.2 and 33.67 ± 0.2 kcal mol(-1) for the dissociation reaction of (3)NOH (to H + NO). Unimolecular rate constants for the isomerization and dissociation reactions were obtained utilizing kinetic modeling methods. The tunneling and kinetic isotope effects are also investigated for these reactions. The adiabatic singlet-triplet energy splittings are predicted to be 18.45 ± 0.2 and 16.05 ± 0.2 kcal mol(-1) for HNO and NOH, respectively. Kinetic analyses based on solution of simultaneous first-order ordinary-differential rate equations demonstrate that the singlet NOH molecule will be difficult to prepare at room temperature, while the triplet NOH molecule is viable with respect to isomerization and dissociation reactions up to 400 K. Hence, our theoretical findings clearly explain why (1)NOH has not yet been observed experimentally.  相似文献   

8.
The Raman (3700-100 cm(-1)) and infrared (4000-400 cm(-1)) spectra of solid 2-aminophenol (2AP) have been recorded. The internal rotation of both OH and NH2 moieties produce ten conformers with either Cs or C1 symmetry. However, the calculated energies as well as the imaginary vibrational frequencies reduce rotational isomerism to five isomers. The molecular geometry has been optimized without any constraints using RHF, MP2 and B3LYP levels of theory at 6-31G(d), 6-311+G(d) and 6-31++G(d,p) basis sets. All calculations predict 1 (cis; OH is directed towards NH2) to be the most stable conformation except RHF/6-31++G(d,p) basis set. The 1 (cis) isomer is found to be more stable than 8 (trans; OH is away from the NH2 moiety and the NH bonds are out-of-plane) by 1.7 kcal/mol (598 cm(-1)) as obtained from MP2/6-31G(d) calculations. Aided by experimental and theoretical vibrational spectra, cis and trans 2AP are coexist in solution but cis isomer is more likely present in the crystalline state. Aided by MP2 and B3LYP frequency calculations, molecular force fields, simulated vibrational spectra utilizing 6-31G(d) basis set as well as normal coordinate analysis, complete vibrational assignments for HOC6H4NH2 and DOC6H4ND2 have been proposed. Furthermore, we carried out potential surface scan, to determine the barriers to internal rotations of NH2 and OH groups. All results are reported herein and compared with similar molecules when appropriate.  相似文献   

9.
Classical trajectory calculations on intramolecular vibrational energy redistribution (IVR) involving the torsion in 1,1,1-trifluoroethane (TFE) are reported. Two potential energy functions (PEFs) are used to describe the potential energy surface. The "full" PEF gives excellent agreement with the experimental vibrational frequencies. The "simple" PEF omits nondiagonal interaction terms, but still gives very good agreement with the experimental frequencies. The "simple" PEF is intended to minimize mode-mode coupling. Neither PEF includes the HF elimination reaction. Calculations are carried out both with nominal microcanonical selection of initial coordinates and momenta, and with a modified selection method that places controlled amounts of energy in the torsion. Total (classical) vibrational energies from 0.005 to 140 kcal mol(-1) are investigated. The calculated time constants describing energy flow out of the torsional mode are <10 ps for classical vibrational energies near the classical reaction threshold energy (approximately 75 kcal mol(-1)) and greater. It is found that the rate of decay from the torsion largely depends on the amount of energy in the other vibrational modes. Analysis using power spectra shows that the torsional mode in TFE is strongly coupled to the other vibrational modes. These results strongly suggest that vibrational energy in TFE will not be sequestered in the torsion for time periods greater than a few tens of picoseconds when the molecule has enough energy to react via HF elimination.  相似文献   

10.
The force field previously obtained for both anomers of glucose has been applied to six disaccharides that are molecules of D-glucopyranosyl residues. These six disaccharides have different types of glycosidic linkages—that is, α, α trehalose dihydrate ( 1-1 ), sophorose monohydrate (β, 1-2 ), laminarabiose (β, 1-3 ), maltose monohydrate (α, 1-4 ) and cellobiose (β, 1-4 ), and gentiobiose (β, 1-6 ). From a careful analysis of the infrared and Raman spectra and from harmonic dynamics calculations in the crystalline state, the results show the reliability and the transferability of the set of parameters previously obtained for different carbohydrates. Below 1500 cm?1, observed data and the corresponding calculated frequencies agreed within 5 cm?1 for each of the six disaccharides. The vibrational density of states are well reproduced by these calculations for each molecule, particularly for the fingerprint regions. Moreover, as found by other workers who used sophisticated potential energy functions, no additional terms are needed to express the exoanomeric effect. Specific force constants characteristic of each glycosidic linkage have been derived, particularly for the glycosidic angle bending. More interesting are the values of the internal rotation barriers. It is shown that they are of the same size for both sides of the glycosidic linkage: VC1O1 = VO1Cx′ = 3.29 kcal/mol for an alpha residue and 2.64 kcal/mol for a beta unit (x = 1–6 depends on the position of the glycosidic linkages of the considered disaccharide). © 1995 by John Wiley & Sons, Inc.  相似文献   

11.
The Beryllium tetramer: profiling an elusive molecule   总被引:1,自引:0,他引:1  
The structure and energetics of Be(4) are investigated using state-of-the-art coupled-cluster methods. We compute the optimized bond length, dissociation energy, and anharmonic vibrational frequencies. A composite approach is employed, starting from coupled-cluster theory with single, double, and perturbative triple excitations extrapolated to the complete basis set (CBS) limit using Dunning's correlation consistent cc-pCVQZ and cc-pCV5Z basis sets. A correction for full triple and connected quadruple excitations in the smaller cc-pCVDZ basis set is then added, yielding an approximation to CCSDT(Q)/CBS denoted c~CCSDT(Q). Corrections are included for relativistic and non-Born-Oppenheimer effects. We obtain D(e) = 89.7 kcal mol(-1), D(0) = 84.9 kcal mol(-1), and r(e) = 2.043 A?. Second-order vibrational perturbation theory (VPT2) is applied to a full quartic force field computed at the c~CCSDT(Q) level of theory, yielding B(e) = 0.448 cm(-1) and fundamental frequencies of 666 (a(1)), 468 (e), and 571 (t(2)) cm(-1). Computations on the spectroscopically characterized Be(2) molecule are reported for the purpose of benchmarking our methods. Perturbative estimates of the effect of quadruple excitations are found to be essential to computing accurate parameters for Be(2); however, they seem to exert a much smaller influence on the structure and energetics of Be(4). Our extensive characterization of the Be(4) bonding potential energy surface should aid in the experimental identification of this thermodynamically viable but elusive molecule.  相似文献   

12.
The study of the anomeric differences observed on the spectra of methyl-alpha- and methyl-beta-D-galactopyranoside is the essential goal of this investigation. Thus, after a careful examination of the IR and Raman spectra of these two compounds, several differences in the intensities and frequency shifts are observed. This is especially noted in the region 1000-700 cm(-1). In order to make some assignments with more precision, the normal modes analyses of the two compounds are performed in the crystalline state. For this purpose, a modified Urey-Bradley-Shimanouchi force field has been combined with an intermolecular potential energy function. The initial set of force constants comes from those of alpha- and beta-D-galactopyranosyl, then the force constants have been varied, so as to obtain a good agreement between the observed and the calculated vibrational frequencies. The obtained results have finally reproduced the experimental data and have confirmed the previous assignments made for the methyl-alpha- and methyl-beta-D-galactopyranoside. The calculations have demonstrated also the transferability of the set of parameters of the initial force field of D-galactose to methyl-D-galactopyranoside.  相似文献   

13.
The torsional potentials, molecular conformations and vibrational spectra, of 2-, 3- and 4-formyl pyridine have been investigated using density functional theory (DFT) method with 6-31+G* basis set. From the calculations, 2-formyl pyridine and 3-formyl pyridine were predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of 9.38 kcal/mol and 8.55 kcal/mol, respectively. The two equivalent planar structures of 4-formyl pyridine are separated by an energy barrier of 7.18 kcal/mol. The vibrational wavenumbers and the corresponding vibrational assignments of molecules in C(s) symmetry were examined theoretically and the calculated Infrared of the molecules in the cis conformation was plotted. Observed wavenumbers for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of DFT force fields using the standard 6-31+G* basis set of the theoretical optimized geometry.  相似文献   

14.
Molecular structure and vibrational frequencies of 1,3-diphenyl-1,3-propanedione, known as dibenzoylmethane (DBM), have been investigated by means of density functional theory (DFT) calculations. The results were compared with those of benzoylacetone (BA) and acetylacetone (AA), the parent molecule. IR and Raman spectra of DBM and its deuterated analogue were clearly assigned.The calculated hydrogen bond energy of DBM is 16.15 kcal/mol, calculated at B3LYP/6-311++G** level of theory, which is 0.28 kcal/mol more than that of AA. This result is in agreement with the vibrational and NMR spectroscopy results. The molecular stability and the hydrogen bond strength were investigated by applying the Natural Bond Orbital analysis (NBO) and geometry calculations. The theoretical calculations indicate that the hydrogen bond in DBM is relatively stronger than that in BA and AA.  相似文献   

15.
The structural stability of acetohydrazide CH(3)-CO-NH-NH(2) was investigated by DFT-B3LYP and ab initio MP2 calculations with 6-311+G** basis set. The C-N rotational barrier in the molecule was calculated to be about 26 kcal/mol that suggested the planar sp(2) nature of the nitrogen atom of the central NH moiety. The N atom of the terminal NH(2) group was predicted to highly prefer the pyramidal sp(3) structure with an inversion barrier of about 7-8 kcal/mol. The molecule was predicted to have a trans-syn (N-H bond is trans with respect to CO bond and NH(2) moiety is syn to C-N bond) conformation as the lowest energy structure. The vibrational frequencies were computed at B3LYP level of theory and normal coordinate calculations were carried out for the trans-syn acetohydrazide. Complete vibrational assignments were made on the basis of normal coordinate analyses and experimental infrared and Raman data.  相似文献   

16.
The unimolecular reactions of CF3CFClCH2Cl molecules formed with 87 kcal mol(-1) of vibrational energy by recombination of CF3CFCl and CH2Cl radicals at room temperature have been characterized by the chemical activation technique. The 2,3-ClH and 2,3-FH elimination reactions, which have rate constants of (2.5 +/- 0.8) x 10(4) and (0.38 +/- 0.11) x 10(4) s(-1), respectively, are the major reactions. The 2,3-FCl interchange reaction was not observed. The trans (or E)-isomers of CF3CFCHCl and CF3CClCHCl are favored over the cis (or Z)-isomers. Density functional theory at the B3PW91/6-31G(d',p') level was used to evaluate thermochemistry and structures of the molecule and transition states. This information was used to calculate statistical rate constants. Matching the calculated to the experimental rate constants for the trans-isomers gave threshold energies of 62 and 63 kcal mol(-1) for HCl and HF elimination, respectively. The threshold energy for FCl interchange must be 3-4 kcal mol(-1) higher than for HF elimination. The results for CF3CFClCH2Cl are compared to those from CF3CFClCH3; the remarkable reduction in rate constants for HCl and HF elimination upon substitution of one Cl atom for one H atom is a consequence of both a lower E and higher threshold energies for CF3CFClCH2Cl.  相似文献   

17.
Quantum mechanical calculations of the geometric, energetic, electronic, and vibrational features of a transition structure for gas-phase water–formaldehyde addition (FW1?) are described, and a new transition-structure search algorithm is presented. Basis-set-dependent effects are assessed by comparisons of computed properties obtained from self-consistent field (SCF) molecular orbital (MO) calculations with STO-3G, 4-31G, and 6-31G** basis sets in the absence of electron correlation. The results obtained suggest that STO-3G-level calculations may be sufficiently reliable for the prediction of the transition structure of FW1? and for the transition structures of related carbonyl addition reactions. Moreover, the calculated activation energy for formation of FW1? from water and formaldehyde (?44 kcal mol?1) is very similar in all three basis sets. However, the energy of formaldehyde hydration predicted by STO-3G (? ?45 kcal mol?1) is about three times larger than that predicted by the other two basis sets, with the activation energy for dihydroxymethane dehydration also being too large in STO-3G. Calculated force constants in all three basis sets are generally too large, leading to vibrational frequencies that are also too large. However, uniformly scaled force constants (in internal coordinates) give much better agreement with experimental frequencies, scaled 4-31G force constants being slightly superior to scaled STO-3G force constants.  相似文献   

18.
The vibrational spectra of beta-D-fructopyranose crystals have been recorded in the 4000-400 cm(-1) region using the infrared and in the 4000-20 cm(-1) region using the Raman. These spectra are used as an experimental basis in order to establish a force field for the beta-D-fructopyranose molecule in the crystalline state through a normal co-ordinates analysis. For this purpose, a modified Urey-Bradley-Shimanoushi force field was combined with an intermolecular potential energy function that includes the van-der-Walls interactions, the electrostatic terms, and an explicit hydrogen bond function. The force field parameters are derived from those of beta-D-glucose and are fitted so as to obtain a good agreement between the calculated and the observed frequencies. The results obtained demonstrate the reliability and the transferability of the set of parameters constituting the initial force field. The fitted force field reproduces the experimental spectra to a marked degree of accuracy.  相似文献   

19.
FT-Infrared (4000-400 cm(-1)) and NIR-FT-Raman (4000-50 cm(-1)) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON-trans and ON-cis: the ON-trans rotamer being more stable than cis by 3.42 kcal mol(-1) for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol(-1) for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON-trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm(-1); the characteristic ring mode at 1051 cm(-1) is diminished; a mixed mode near 707 cm(-1) is enhanced. Further, an observed doublet near 1696-1666 cm(-1) in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm(-1) and a combination mode of ring stretch near 1059 cm(-1) and deformation vibration, 625 cm(-1). A strong Raman aldehydic torsional mode at 62 cm(-1) is interpreted to correspond to the dominant ON-trans over cis rotamers population.  相似文献   

20.
Spurred by the apparent conflict between ab initio predictions and infrared spectroscopic evidence regarding the relative stability of isomers of protonated carbonyl sulfide, key stationary points on the isomerization surface of HOCS(+) have been examined via systematic extrapolations of ab initio energies. Electron correlation has been accounted for using second-order M?ller-Plesset perturbation theory and coupled cluster theory through triple excitations [CCSD, CCSD(T), and CCSDT] in conjunction with the correlation consistent hierarchy of basis sets, cc-pVXZ (X=D,T,Q,5,6). HSCO(+) is predicted to lie lower in energy than HOCS(+) by 4.86 kcal mol(-1), computed using the focal point extrapolation scheme of Allen and co-workers [J. Chem. Phys. 99, 4638 (1993)] with corrections for anharmonic zero-point vibrational energy, core correlation, non-Born-Oppenheimer, and scalar relativistic effects. A transition state has been located, constituting the barrier to isomerization of HSCO(+) to HOCS(+), lying 68.9 kcal mol(-1) higher in energy than HSCO(+). This is well above predicted exothermicity [DeltaH(r) (o)(0 K)=48.1 kcal mol(-1), cc-pVQZ CCSD(T)] for the reaction considered in the experiments (HSCO(+)+H(2)-->OCS+H(3) (+)). Though proton tunneling will lead to a lower effective barrier, this prediction is consistent with the lack of HSCO(+) in electrical discharges in H(2)OCS, since the relative populations of HOCS(+) and HSCO(+) will depend on the experimental details of the protonation route rather than the relative thermodynamic stability of the isomers. Anharmonic vibrational frequencies and vibrationally corrected rotational constants from cc-pVTZ CCSD(T) cubic and quartic force constants are provided, to aid in the spectroscopic observation of the energetically favorable but apparently elusive HSCO(+) isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号