首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unique optoelectronic properties and promising photovoltaic applications of organolead halide perovskites have driven the exploration of facile strategies to synthesize organometal halide perovskites and corresponding hybrid materials and devices. Currently, the preparation of CH3NH3PbBr3 perovskite nanowires, especially those with porous features, is still a great challenge. An efficient self‐template‐directed synthesis of high‐quality porous CH3NH3PbBr3 perovskite nanowires in solution at room temperature using the Pb‐containing precursor nanowires as both the sacrificial template and the Pb2+ source in the presence of CH3NH3Br and HBr is now presented. The initial formation of CH3NH3PbBr3 perovskite layers on the surface of the precursor nanowires and the following dissolution of the organic component of the latter led to the formation of mesopores and the preservation of the 1D morphology. Furthermore, the perovskite nanowires are potential materials for visible‐light photodetectors with high sensitivity and stability.  相似文献   

2.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high‐efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal‐engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band‐gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first‐principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band‐gap narrowing effect. This work provides new insights for achieving lead‐free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

3.
Metal halide perovskites are emerging as new generation optoelectronic materials due to their high carrier mobility, long carrier diffusion length and large light absorption coefficient, which have broad applications in solar cell, light‐emitting diode, laser, photodetector and transistors. Perovskite single crystal is an ideal platform for discerning the intrinsic properties of these materials. In some cases, perovskite single crystals are better candidates to gain high performance optoelectronics. However, the growth of perovskite single crystals is time and cost consuming, which has an obvious disadvantage for device exploration. Therefore, fast growth technique is highly desirable in not only promoting the use of perovskites in commercial applications but also facilitating deep physical investigation of the materials. In this review, we summarize thoroughly the development of fast growth of the halide perovskites single crystal. Specifically, we highlight the progress of rapid growth techniques with emphasis on the optimization control.  相似文献   

4.
Because perovskite crystals exhibit unique magnetic, conductive, and optical properties, they have been the subject of many fundamental investigations in various research fields. However, investigations related to their use as optoelectronic device materials are still in their early days. Regarding oxide perovskites, which have been investigated for a long time, the efficiency of photoluminescence (PL) induced by band‐to‐band transitions is extremely low because of the localized nature of the carriers in these materials. On the other hand, halide perovskites exhibit a highly efficient band‐edge PL attributable to the recombination of delocalized photocarriers. Therefore, it is expected that this class of high‐quality materials will be advantageous for optoelectronic devices such as solar cells and light‐emitting diodes. In this Minireview, we discuss various aspects of the PL properties and carrier dynamics of SrTiO3 and CH3NH3PbX3 (X=I, Br), which are representative oxide and halide perovskites.  相似文献   

5.
Novel inorganic lead‐free double perovskites with improved stability are regarded as alternatives to state‐of‐art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–property relationship in lead‐free double perovskites, but also offers new strategies for further development of advanced perovskite devices.  相似文献   

6.
Recently, lead halide‐based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic‐inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long‐term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3, X is halide) as all‐inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3‐based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs.  相似文献   

7.
Halide double perovskites have recently emerged as a promising environmentally friendly optoelectronic and photovoltaic material for their inherent thermodynamic stability, high defect tolerance, and appropriate band gaps. However, to date, no ferroelectric material based on halide double perovskites has been discovered. Herein, by hetero‐substitution of lead and cation intercalation of n‐propylamine, the first halide double perovskite ferroelectric, (n‐propylammonium)2CsAgBiBr7 ( 1 ), is reported and it exhibits distinct ferroelectricity with a notable saturation polarization of about 1.5 μC cm?2. More importantly, single‐crystal photodetectors of 1 exhibit extraordinary performance with containing high on/off ratios of about 104, fast response rates of 141 μs, and detectivity as high as 5.3×1011 Jones. This finding opens a new way to design high‐performance perovskite ferroelectrics, and provides a viable approach in the search for stable and lead‐free optoelectronic materials as an alternative to the lead‐containing system.  相似文献   

8.
环境友好型无铅卤化物钙钛矿太阳能电池研究进展   总被引:1,自引:1,他引:0  
ABX_3(A为甲胺、甲脒等有机离子或铯离子,B为铅或锡等金属离子,X为溴、碘等卤化物离子)卤化物钙钛矿材料具有优异的光电特性,是当前太阳能电池研究的前沿和热点之一。然而,这类太阳能电池普遍面临含毒性元素铅和稳定性差等问题,极大地阻碍了钙钛矿太阳能电池商业化应用进程。因此,发展新型高效无铅钙钛矿太阳能电池势在必行。本文评述了环境友好型无铅卤化物钙钛矿太阳能电池的最新研究动态和进展,探讨了该类太阳能电池的制备、性能及其稳定性等问题,展望了其未来发展趋势。  相似文献   

9.
The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three‐dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.  相似文献   

10.
Interest has been growing in defects of halide perovskites in view of their intimate connection with key material optoelectronic properties. In perovskite quantum dots (PQDs), the influence of defects is even more apparent than in their bulk counterparts. By combining experiment and theory, we report herein a halide‐vacancy‐driven, ligand‐directed self‐assembly process of CsPbBr3 PQDs. With the assistance of oleic acid and didodecyldimethylammonium sulfide, surface‐Br‐vacancy‐rich CsPbBr3 PQDs self‐assemble into nanowires (NWs) that are 20–60 nm in width and several millimeters in length. The NWs exhibit a sharp photoluminescence profile (≈18 nm full‐width at‐half‐maximum) that peaks at 525 nm. Our findings provide insight into the defect‐correlated dynamics of PQDs and defect‐assisted fabrication of perovskite materials and devices.  相似文献   

11.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

12.
Organo‐lead halide perovskites (OHPs) have recently emerged as a new class of exceptional optoelectronic materials, which may find use in many applications, including solar cells, light emitting diodes, and photodetectors. More complex applications, such as lasers and electro‐optic modulators, require the use of monocrystalline perovskite materials to reach their ultimate performance levels. Conventional methods for forming single crystals of OHPs like methylammonium lead bromide (MAPbBr3) afford limited control over the product morphology, rendering the assembly of defined microcavity nanostructures difficult. We overcame this by synthesizing for the first time (MA)[PbBr3]⋅DMF ( 1 ), and demonstrating its facile transformation into monocrystalline MAPbBr3 microplatelets. The MAPbBr3 microplatelets were tailored into waveguide based photonic devices, of which an ultra‐low propagation loss of 0.04 dB μm−1 for a propagation distance of 100 μm was demonstrated. An efficient active electro‐optical modulator (AEOM) consisting of a MAPbBr3 non‐linear arc waveguide was demonstrated, exhibiting a 98.4 % PL intensity modulation with an external voltage of 45 V. This novel synthetic approach, as well as the demonstration of effective waveguiding, will pave the way for developing a wide range of photonic devices based on organo‐lead halide perovskites.  相似文献   

13.
Double perovskites (DPs) with a generic formula A2M′(I)MIIIX6 (A and M are metal ions, and X=Cl, Br, I) are now being explored as potential alternatives to Pb‐halide perovskites for solar cells and other optoelectronic applications. However, these DPs typically suffer from wide (≈3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered halide DP Cs4CuSb2Cl12 (CCSC) with bivalent CuII ion in the place of M′(I) was reported, which exhibit a band gap of approximately 1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal and chemical stability, and magnetic response of CuII d9 electrons controlling the optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides a stable and scalable product. CCSC is stable in water/acetone solvent mixtures (≈30 % water) and many other polar solvents unlike Pb‐halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4, and SbCl3 at 210 °C, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long‐range magnetic ordering is observed in CCSC even at room temperature. The role of such magnetic ordering in controlling the dispersion of the conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed.  相似文献   

14.
铅卤钙钛矿材料由于其优异的光电性质而受到了广泛关注. 但是, 材料中铅的毒性问题极大地阻碍了其大规模应用. 因此, 寻找与铅卤钙钛矿具有相似光电性质的非铅卤化物钙钛矿材料十分重要. 其中, 锡基卤化物钙钛矿被认为是铅基钙钛矿材料最佳的替代材料之一. 本文通过简便的反溶剂方法, 合成了一系列新型二维(RNH3)2SnX4(R为烷基链, X=Br-, I-)钙钛矿材料. 研究结果表明, 所合成的材料具有优异的荧光发射性质, 发光量子效率高达98.5%, 比三维ASnX3[A=Cs+, 甲胺(MA+), 甲脒(FA+)等]型钙钛矿表现出更好的稳定性. 本文所采用的合成方法简单易行, 有利于实现金属卤化物钙钛矿材料的大规模合成及在固态照明器件和显示器件领域的工业应用.  相似文献   

15.
In recent two years, organometal halide perovskites quantum dots are emerging as a new member of the nanocrystals family. From the chemical point of view, these perovskites quantum dots can be synthesized either by classical hot-injection technique for inorganic semiconductor quantum dots or the reprecipitation synthesis at room temperature for organic nanocrystals. From a physical point of view, the observed large exciton binding energy, well self-passivated surface, as well as the enhanced nonlinear properties have been of great interest for fundamental study. From the application point of view, these perovskites quantum dots exhibit high photoluminescence quantum yields, wide wavelength tunability and ultra-narrow band emissions, the combination of these superior optical properties and low cost fabrication makes them to be suitable candidates for display technology. In this short review, we introduce the synthesis, optical properties, the prototype light-emitting devices, and the current important research tasks of halide perovsktie quantum dots, with an emphasis on CH3NH3PbX3 (X=Cl, Br, I) quantum dots that developed in our group.  相似文献   

16.
Journal of Solid State Electrochemistry - Organometallic halide perovskites have been arisen as a class of multi-purpose materials with exciting applications in optoelectronic devices such as solar...  相似文献   

17.
18.
Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2SnI4] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.  相似文献   

19.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

20.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi?I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号