首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The crystal structure of the ambient‐pressure phase of vanadyl pyrophosphate, (VO)2P2O7, has been precisely determined at 120 K from synchrotron X‐ray diffraction data measured on a high‐quality single crystal. The structure refinement unambiguously establishes the orthorhombic space group Pca21 as the true crystallographic symmetry. Moreover, it improves the accuracy of previously published atomic coordinates by one order of magnitude, and provides reliable anisotropic displacement parameters for all atoms. Along the a axis, the structure consists of infinite two‐leg ladders of vanadyl cations, (VO)2+, which are separated by pyrophosphate anions, (P2O7)4?. Parallel to the c axis, the unit cell comprises two alternating crystallographically inequivalent chains of edge‐sharing VO5 square pyramids bridged by PO4 double tetrahedra. No structural phase transition has been observed in the temperature range between 300 and 120 K.  相似文献   

2.
As a function of temperature, the hexamethylenetetramine–2‐methylbenzoic acid (1/2) cocrystal, C6H12N4·2C8H8O2, undergoes a reversible structural phase transition. The orthorhombic high‐temperature phase in the space group Pccn has been studied in the temperature range between 165 and 300 K. At 164 K, a t2 phase transition to the monoclinic subgroup P21/c space group occurs; the resulting twinned low‐temperature phase was investigated in the temperature range between 164 and 100 K. The domains in the pseudomerohedral twin are related by a twofold rotation corresponding to the matrix (100/00/00). Systematic absence violations represent a sensitive criterium for the decision about the correct space‐group assignment at each temperature. The fractional volume contributions of the minor twin domain in the low‐temperature phase increases in the order 0.259 (2) → 0.318 (2) → 0.336 (2) → 0.341 (3) as the temperature increases in the order 150 → 160 → 163 → 164 K. The transformation occurs between the nonpolar point group mmm and the nonpolar point group 2/m, and corresponds to a ferroelastic transition or to a t2 structural phase transition. The asymmetric unit of the low‐temperature phase consists of two hexamethylenetetramine molecules and four molecules of 2‐methylbenzoic acid; it is smaller by a factor of 2 in the high‐temperature phase and contains two half molecules of hexamethylenetetramine, which sit across twofold axes, and two molecules of the organic acid. In both phases, the hexamethylenetetramine residue and two benzoic acid molecules form a three‐molecule aggregate; the low‐temperature phase contains two of these aggregates in general positions, whereas they are situated on a crystallographic twofold axis in the high‐temperature phase. In both phases, one of these three‐molecule aggregates is disordered. For this disordered unit, the ratio between the major and minor conformer increases upon cooling from 0.567 (7):0.433 (7) at 170 K via 0.674 (6):0.326 (6) and 0.808 (5):0.192 (5) at 160 K to 0.803 (6):0.197 (6) and 0.900 (4):0.100 (4) at 150 K, indicating temperature‐dependent dynamic molecular disorder. Even upon further cooling to 100 K, the disorder is retained in principle, albeit with very low site occupancies for the minor conformer.  相似文献   

3.
Two endothermic, reversible structural phase transitions of first order have been observed in Ag4Mn3O8 by means of in‐situ powder diffraction and by differential scanning calorimetry. At a temperature of T = 477 K, Ag4Mn3O8 undergoes a structural phase transition from the room temperature phase in space group P3121 to a phase in space group R32, and at T = 689 K a second phase transition to a structure in space group P4332 occurs. Whilst the Mn3O8 framework does not change significantly upon heating, rearrangements of the silver atoms, located in the cavities of the framework, were found to be the driving force behind the transitions. The structural changes with increasing temperature proceed along a path of minimal group‐supergroup relations between the respective space groups.  相似文献   

4.
The polycyclic title compound {systematic name: (1S,16S,17S,31S)‐3,20‐diazatetracyclo[15.15.01,17.13,31.116,20]tetratriaconta‐6,8,23,25‐tetraene}, C32H52N2, has recently been isolated and characterized structurally, in solution by NMR spectroscopy and in the solid state by X‐ray crystallography. At 130 K the structure is monoclinic (P21, Z = 4) and comprises two molecules in the asymmetric unit with distinctly different conformations in the twelve‐C‐atom bridging chains. We report that, at 250 K, a phase change from monoclinic to orthorhombic (P22121, Z = 4) occurs. The higher‐temperature phase is structurally characterized herein at 293 K. The two different conformers resolved in the monoclinic low‐temperature form merge to give a single disordered molecule in the asymmetric unit of the high‐temperature phase.  相似文献   

5.
The structure of dilanthanum ruthenium pentoxide was solved by powder neutron diffraction at room temperature and 1.5 K. High‐temperature La2RuO5 crystallizes in the monoclinic space group P21/c. Upon cooling, the sample undergoes a phase transition to the triclinic low‐temperature form (space group P). This transition leads to pronounced changes in the Ru—O—Ru bond distances, resulting in a dimerization of the ruthenium ions.  相似文献   

6.
5‐Methyl­sulfanyl‐1H‐tetrazole, C2H4N4S, crystallizes in dimor­phic forms; the α‐form crystallizes at room temperature in the monoclinic crystal system, space group P21/m, and the β‐form crystallizes by sublimation at 423 K in the orthorhombic crystal system, space group Pbcm. In both forms, the mol­ecules occupy crystallographic mirror planes and are connected to one another via N—H⋯N hydrogen bonds, the amino H atoms being disordered. The two forms differ from one another in their packing; there are polar layers in the α‐form and non‐polar layers in the β‐form.  相似文献   

7.
Tripivaloylmethane [systematic name: 4‐(2,2‐dimethylpropanoyl)‐2,2,6,6‐tetramethylheptane‐3,5‐dione], C16H28O3, is known to crystallize at room temperature in the space group R3m with three molecules in the unit cell. The molecules are conformationally chiral and pack so that each molecular site is occupied with equal probability by the two enantiomers. Upon cooling to 110 K, the structure partially orders; two molecules in the unit cell order into two different conformations of opposite chirality, while the third remains disordered. The symmetry of the resulting crystal is P3, with each of the molecules lying about a different threefold rotation axis. This paper describes an unusual case of order–disorder phase transition in which the structure partially orders by changes of molecular conformation in the single crystals. Such behaviour is of interest in the study of phase transitions and molecular motion in the solid state.  相似文献   

8.
The crystal structure of di‐tert‐butyl­silanediol, C8H20O2Si, has a reversible phase transition at 211 (2) K. The orthorhombic high‐temperature structure has space group Ibam, with Z′ = , and shows a disordered hydrogen‐bonding system. The low‐temperature structure, determined at 143 (2) K, has a twinned monoclinic cell, with space group C2/c and Z′ = 2, and shows an ordered hydrogen‐bonding system.  相似文献   

9.
Three polymorphs of bis(nitrito‐κN)[tris(2‐aminoethyl)amine‐κ4N,N′,N′′,N′′′]cobalt(III) chloride, [Co(NO2)2(C6H18N4)]Cl, have been structurally characterized in the 100–300 K temperature range. Two orthorhombic polymorphs are related by a solid‐state enantiotropic order–disorder k2 phase transition at ca 152 K. The third, monoclinic, polymorph crystallizes as a nonmerohedral twin. In the structure of the high‐temperature (300 K) orthorhombic polymorph, the CoIII complex cation resides on a crystallographic mirror plane, whereas the Cl anion occupies a crystallographic twofold axis. In the unit cell of the monoclinic polymorph, the cationic CoIII complex is in a general position, whose charge is balanced by two halves of two Cl anions, each residing on a crystallographic twofold axis.  相似文献   

10.
The temperature dependent (150–290 K) crystal structure of the low‐temperature α‐phase, and high temperature β‐phase, of succinonitrile has been determined by high resolution in situ powder diffraction. The α‐phase has a monoclinic unit cell that contains four gauche molecules and belongs to the P21/a space group. The crystal undergoes a reversible first‐order phase transition at 233 K into the high temperature β‐phase. The lattice parameters increase with temperature and the phase transition leads to an abrupt 6.7 % increase in volume. The β‐phase crystallizes into a bcc‐structure that belongs to the space group. The high temperature phase; however, is a highly disordered plastic crystal at room temperature that contains both gauche and trans molecules. The non‐linearity in the overall isotropic temperature‐factor indicates other possible phase transitions in the temperature range of 233–250 K.  相似文献   

11.
The crystalline one‐dimensional compound, [RhII2(bza)4(pyz)]n ( 1 ) (bza=benzoate, pyz=pyrazine) demonstrates gas adsorbency for N2, NO, NO2, and SO2. These gas‐inclusion crystal structures were characterized by single‐crystal X‐ray crystallography as 1 ?1.5 N2 (298 K), 1 ?2.5 N2 (90 K), and 1 ?1.95 NO (90 K) under forcible adsorption conditions and 1 ?2 NO2 (90 K) and 1 ?3 SO2 (90 K) under ambient pressure. Crystal‐phase transition to the P space group that correlates with gas adsorption was observed under N2, NO, and SO2 conditions. The C2/c space group was observed under NO2 conditions without phase transition. All adsorbed gases were stabilized by the host lattice. In the N2, NO, and SO2 inclusion crystals at 90 K, short interatomic distances within van der Waals contacts were found among the neighboring guest molecules along the channel. The adsorbed NO molecules generated the trans‐NO???NO associated dimer with short intermolecular contacts but without the conventional chemical bond. The magnetic susceptibility of the NO inclusion crystal indicated antiferromagnetic interaction between the NO molecules and paramagnetism arising from the NO monomer. The NO2 inclusion crystal structure revealed that the gas molecules were adsorbed in the crystal in dimeric form, N2O4.  相似文献   

12.
Three polymorphic forms of 6,6′‐dimethyl‐2,2′‐bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature‐dependent permittivity, differential scanning calorimetry, and X‐ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α‐form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base‐type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti‐polar structure (space group, P21/c) at 378 K. The non‐ferroelectric β‐ and γ‐form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen‐bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase‐transition temperature (TC) and hydrogen‐bond length (<d>) was observed, and was attributed to the potential barrier height for proton off‐centering or order/disorder phenomena. The optimized spontaneous polarization (Ps) agreed well with the results of the first‐principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing <d>. These data consistently demonstrated that stretching <d> is a promising way to enhance the polarization performance and thermal stability of hydrogen‐bonded organic ferroelectrics.  相似文献   

13.
A new polymorph (form II) is reported for the 1:1 dimethyl sulfoxide solvate of 2,3,5,6‐tetrafluoro‐1,4‐diiodobenzene (TFDIB·DMSO or C6F4I2·C2H6SO). The structure is similar to that of a previously reported polymorph (form I) [Britton (2003). Acta Cryst. E 59 , o1332–o1333], containing layers of TFDIB molecules with DMSO molecules between, accepting I…O halogen bonds from two TFDIB molecules. Re‐examination of form I over the temperature range 300–120 K shows that it undergoes a phase transformation around 220 K, where the DMSO molecules undergo re‐orientation and become ordered. The unit cell expands by ca 0.5 Å along the c axis and contracts by ca 1.0 Å along the a axis, and the space‐group symmetry is reduced from Pnma to P212121. Refinement of form I against data collected at 220 K captures the (average) structure of the crystal prior to the phase transformation, with the DMSO molecules showing four distinct disorder components, corresponding to an overlay of the 297 and 120 K structures. Assessment of the intermolecular interaction energies using the PIXEL method indicates that the various orientations of the DMSO molecules have very similar total interaction energies with the molecules of the TFDIB framework. The phase transformation is driven by interactions between DMSO molecules, whereby re‐orientation at lower temperature yields significantly closer and more stabilizing interactions between neighbouring DMSO molecules, which lock in an ordered arrangement along the shortened a axis.  相似文献   

14.
The title compound, [(C2H5)4N][FeCl4], has at room temperature a disordered structure in the high‐hexagonal space group P63mc. At 230 K, the structure is merohedrally twinned in the low‐hexagonal space group P63. The volume has increased by a factor of 9 with respect to the room‐temperature structure. At 170 and 110 K, the structure is identical in the orthorhombic space group Pca21 and twinned by reticular pseudomerohedry. The volume has doubled with respect to the room‐temperature structure. All three space groups, viz. P63mc, P63 and Pca21, are polar and the direction of the polar axis is not affected by the twinning. In the P63 and Pca21 structures, all cations and anions are well ordered.  相似文献   

15.
By applying high temperature (1270 K) and high pressure (3.5 GPa), significant changes occur in the structural volume and crystal topology of ThMo2O8, allowing the formation of an unexpected new ThMo2O8 polymorph (high‐temperature/high‐pressure (HT/HP) orthorhombic ThMo2O8). Compared with the other three ThMo2O8 polymorphs prepared at the ambient pressure (monoclinic, orthorhombic, and hexagonal phases), the molar volume for the quenched HT/HP–orthorhombic ThMo2O8 is decreased by almost 20 %. As a result of such a dramatic structural transformation, a permanent high‐pressure quenchable state is able to be sustained when the pressure is released. The crystal structures of the three ambient ThMo2O8 phases are based on three‐dimensional (3D) frameworks constructed from corner‐sharing ThOx (x=6, 8, or 9) polyhedra and MoO4 tetrahedra. The HT/HP–orthorhombic ThMo2O8, however, crystallizes in a novel structural topology, exhibiting very dense arrangements of ThO11 and MoO4+1 polyhedra connecting along the crystallographic c axis. The phase transitions among all four of these ThMo2O8 polymorphs are unveiled and fully characterized with regard to the structural transformation, thermal stability, and vibrational properties. The complementary first principles calculations of Gibbs free energies reveal the underlying energetics of the phase transition, which support the experimental findings.  相似文献   

16.
The title salt, C6H6NO2+·ClO4·C6H5NO2, was crystallized from an aqueous solution of equimolar quantities of perchloric acid and pyridine‐2‐carboxylic acid. Differential scanning calorimetry (DSC) measurements show that the compound undergoes a reversible phase transition at about 261.7 K, with a wide heat hysteresis of 21.9 K. The lower‐temperature polymorph (denoted LT; T = 223 K) crystallizes in the space group C2/c, while the higher‐temperature polymorph (denoted RT; T = 296 K) crystallizes in the space group P2/c. The relationship between these two phases can be described as: 2aRT = aLT; 2bRT = bLT; cRT = cLT. The crystal structure contains an infinite zigzag hydrogen‐bonded chain network of 2‐carboxypyridinium cations. The most distinct difference between the higher (RT) and lower (LT) temperature phases is the change in dihedral angle between the planes of the carboxylic acid group and the pyridinium ring, which leads to the formation of different ten‐membered hydrogen‐bonded rings. In the RT phase, both the perchlorate anions and the hydrogen‐bonded H atom within the carboxylic acid group are disordered. The disordered H atom is located on a twofold rotation axis. In the LT phase, the asymmetric unit is composed of two 2‐carboxypyridinium cations, half an ordered perchlorate anion with ideal tetrahedral geometry and a disordered perchlorate anion. The phase transition is attributable to the order–disorder transition of half of the perchlorate anions.  相似文献   

17.
The structural and electronic properties of MnB4 were studied by high‐temperature powder X‐ray diffraction and measurements of the conductivity and Seebeck coefficient on spark‐plasma‐sintered samples. A transition from the room‐temperature monoclinic structure (space group P21/c) to a high‐temperature orthorhombic structure (space group Pnnm) was observed at about 650 K. The material remained semiconducting after the transition, but its behavior changed from p‐type to n‐type. 55Mn NMR measurements revealed an isotropic chemical shift of ?1315 ppm, confirming an oxidation state of Mn close to I. Solid solutions of Cr1?xMnxB4 (two phases in space groups Pnnm and P21/c) were synthesized for the first time. In addition, nanoindentation studies yielded values of (496±26) and (25.3±1.7) GPa for the Young’s modulus and hardness, respectively, compared to values of 530 and 37 GPa obtained by DFT calculations.  相似文献   

18.
The title achiral compound, C35H34O7, crystallizes in the chiral monoclinic space group P21. The molecules are densely packed to form a helical assembly along the crystallographic twofold screw axis via C—H...O and C—H...π interactions. Interestingly, the unit‐translated helical chains are loosely connected via a rather uncommon edge‐to‐edge Ph—H...H—Ph short contact (H...H = 2.33 Å).  相似文献   

19.
A new crystalline form of benzene‐1,2‐diamine, C6H8N2, crystallizing in the space group Pbca, has been identified during screening for cocrystals. The crystals are constructed from molecular bilayers parallel to (001) that have the polar amino groups directed to the inside and the aromatic groups, showing a herringbone arrangement, directed to the outside. The known monoclinic form and the new orthorhombic polymorph exhibit two‐dimensional isostructurality as the crystals consist of nearly identical bilayers. In the monoclinic form, neighbouring bilayers are generated by a unit translation along the a axis, whereas in the orthorhombic form they are generated by a c‐glide. Moreover, the new form of benzene‐1,2‐diamine is essentially isomorphous with the only known form of 2‐aminophenol.  相似文献   

20.
N,N′‐Di­thio­bisphthal­imide crystallizes from 1,4‐dioxan solution as a solvate, 3C16H8N2O4S2·1.8C4H8O2, having space group C2/c. Four of the 12 C16H8N2O4S2 mol­ecules in the unit cell lie on twofold rotation axes, while the other eight lie in general positions. These mol­ecules are linked by aromatic π–π‐stacking interactions and by C—H?O hydrogen bonds to form a framework enclosing continuous channels running parallel to the [101] direction, which account for ca 20% of the unit‐cell volume. The dioxan mol­ecules lie in these channels disordered across two sets of sites, with one set across an inversion centre and the other across a twofold rotation axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号