首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal–organic framework (MOF) materials have an enormous potential in separation applications, but to realize their potential as semipermeable membranes they need to be assembled into thin continuous macroscopic films for fabrication into devices. By using a facile immersion technique, we prepared ultrathin, continuous zeolitic imidazolate framework (ZIF‐8) membranes on titania‐functionalized porous polymeric supports. The coherent ZIF‐8 layer was surprisingly flexible and adhered well to the support, and the composite membrane could sustain bending and elongation. The membranes exhibited molecular sieving behavior, close to the theoretical permeability of ZIF‐8, with hydrogen permeance up to 201×10−7 mol m−2 s−1 Pa−1 and an ideal H2/CO2 selectivity of 7:1. This approach offers significant opportunities to exploit the unique properties of MOFs in the fabrication of separation and sensing devices.  相似文献   

2.
Carbon‐based transition‐metal oxides are considered as an appropriate anode material candidate for lithium‐ion batteries. Herein, a simple and scalable dry production process is developed to produce carbon‐encapsulated 3D net‐like FeOx /C materials. The process is simply associated with the pyrolysis of a solid carbon source, such as filter paper, adsorbed with ferrite nitrate. The carbon derived from filter paper induces a carbothermal reduction to form metallic Fe, the addition of carbon and iron increase the conductivity of this material. As expected, this 3D net‐like FeOx /C composite delivers an excellent charge capacity of 851.3 mAh g−1 after 50 cycles at 0.2 A g−1 as well as high stability and rate performance of 714.7 mAh g−1 after 300 cycles at 1 A g−1. Superior performance, harmlessness, low costs, and high yield may greatly stimulate the practical application of the products as anode materials in lithium‐ion batteries.  相似文献   

3.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

4.
Microporous amorphous hydrophobic silica materials with well‐defined pores were synthesized by replication of the metal–organic framework (MOF) [Cu3(1,3,5‐benzenetricarboxylate)2] (HKUST‐1). The silica replicas were obtained by using tetramethoxysilane or tetraethoxysilane as silica precursors and have a micro–meso binary pore system. The BET surface area, the micropore volume, and the mesopore volume of the silica replica, obtained by means of hydrothermal treatment at 423 K with tetraethoxysilane, are 620 m2g?1, 0.18 mL g?1, and 0.55 mL g?1, respectively. Interestingly, the silica has micropores with a pore size of 0.55 nm that corresponds to the pore‐wall thickness of the template MOF. The silica replica is hydrophobic, as confirmed by adsorption analyses, although the replica has a certain amount of silanol groups. This hydrophobicity is due to the unique condensation environment of the silica precursors in the template MOF.  相似文献   

5.
Transition metal sulfides have emerged as promising materials in supercapacitor. In this work, we firstly developed an interface-induced superassembly approach to fabricate NiSx and CoSx nanoparticles, which based on ordered mesoporous carbon-graphene aerogel composites for supercapacitor electrodes. The obtained multi-component superassembled nanoparticles-carbon matrix composites have controllable 3D porous structure of multi-stage composite. The two-dimensional graphene interlaced to form a 3D framework with large sponge-like pores, and then the graphene surface was loaded with mesoporous carbon with mesoporous pore size and vertical orientation. The composites display high specific capacitance of 958.1 F g−1 at 0.1 A g−1. The capacitance retains about 97.3 % after 3000 charging-discharging cycles at 2 A g−1. These results indicate that the obtained OMC−GA−Ni3S2/Co4S3 is a promising material for electrochemical capacitors, which providing new technical methods and ideas for the research of new energy and analytical sensor materials in the fields of energy storage, photocatalysis, point-of-care testing devices and other fields.  相似文献   

6.
In this work, Al‐substituted α‐Co(OH)2/GO composites with supercapacitive properties were prepared by chemical co‐precipitated method in which cobalt nitrate and aluminum nitrate were used as the raw material, and graphite oxide was employed as carrier. The as‐prepared materials were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and fourier transform infrared spectroscopy (FT‐IR). Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements showed that the Al‐substituted α‐Co(OH)2/GO electrode material had excellent electrochemical capacitance. The specific capacitance of 1137 F·g−1 was achieved in 6 mol/L KOH solution at a current density of 1 A·g−1 within a potential range of 0–0.5 V. Moreover, only 12% losses of the initial specific capacitance were found after 500 cycles at a current density of 1 A·g−1.  相似文献   

7.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

8.
Low‐density macroporous sponges with densities less than 100 mg cm−3 are both a challenge and an opportunity for advanced chemistry and material science. The challenge lies in the precise preparation of the sponges with property combinations that lead to novel applications. Bottom‐up and top‐down chemical and engineering methods for the preparation of sponges are a major focus of this Review, with an emphasis on carbon and polymer materials. The light weight, sustainability, breathability, special wetting characteristics, large mass transfer, mechanical stability, and large pore volume are typical characteristics of sponges made of advanced materials and could lead to novel applications. Some selected sponge properties and potential applications are discussed.  相似文献   

9.
We report a new method to promote the conductivities of metal–organic frameworks (MOFs) by 5 to 7 magnitudes, thus their potential in electrochemical applications can be fully revealed. This method combines the polarity and porosity advantages of MOFs with the conductive feature of conductive polymers, in this case, polypyrrole (ppy), to construct ppy‐MOF compartments for the confinement of sulfur in Li–S batteries. The performances of these ppy‐S‐in‐MOF electrodes exceed those of their MOF and ppy counterparts, especially at high charge–discharge rates. For the first time, the critical role of ion diffusion to the high rate performance was elucidated by comparing ppy‐MOF compartments with different pore geometries. The ppy‐S‐in‐PCN‐224 electrode with cross‐linked pores and tunnels stood out, with a high capacity of 670 and 440 mAh g?1 at 10.0 C after 200 and 1000 cycles, respectively, representing a new benchmark for long‐cycle performance at high rate in Li–S batteries.  相似文献   

10.
Application of organic electrode materials in rechargeable batteries has attracted great interest because such materials contain abundant carbon, hydrogen, and oxygen elements. However, organic electrodes are highly soluble in organic electrolytes. An organic electrode of 2,3,5,6‐tetraphthalimido‐1,4‐benzoquinone (TPB) is reported in which rigid groups coordinate to a molecular benzoquinone skeleton. The material is insoluble in aprotic electrolyte, and demonstrates a high capacity retention of 91.4 % (204 mA h g−1) over 100 cycles at 0.2 C. The extended π‐conjugation of the material contributes to enhancement of the electrochemical performance (155 mA h g−1 at 10 C). Moreover, density functional theory calculations suggest that favorable synergistic reactions between multiple carbonyl groups and lithium ions can enhance the initial lithium ion intercalation potential. The described approach may provide a novel entry to next‐generation organic electrode materials with relevance to lithium‐ion batteries.  相似文献   

11.
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium‐ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal‐organic‐frameworks with well‐controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4@NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni?Co‐based metal‐organic framework (NiCo‐MOF) and characterized by scanning electron microscopy, transition electron microscopy, X‐Ray diffraction, X‐Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4@NC composite exhibits a capacity of 325 mAh g?1 at a current density of 1 A g?1, and 277.8 mAh g?1 at 10 A g?1. Most importantly, the NiCoSe4@NC retains a capacity of 293 mAh g?1 at 1 A g?1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.  相似文献   

12.
A three‐dimensional (3D) hierarchical MOF‐on‐reduced graphene oxide (MOF‐on‐rGO) compartment was successfully synthesized through an in situ reduced and combined process. The unique properties of the MOF‐on‐rGO compartment combining the polarity and porous features of MOFs with the high conductivity of rGO make it an ideal candidate as a sulfur host in lithium–sulfur (Li‐S) batteries. A high initial discharge capacity of 1250 mAh g?1 at a current density of 0.1 C (1.0 C=1675 mAh g?1) was reached using the MOF‐on‐rGO based electrode. At the rate of 1.0 C, a high specific capacity of 601 mAh g?1 was still maintained after 400 discharge–charge cycles, which could be ascribed to the synergistic effect between MOFs and rGO. Both the hierarchical structures of rGO and the polar pore environment of MOF retard the diffusion and migration of soluble polysulfide, contributing to a stable cycling performance. Moreover, the spongy‐layered rGO can buffer the volume expansion and contraction changes, thus supplying stable structures for Li‐S batteries.  相似文献   

13.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

14.
Selective and sensitive detection of toxic cyanide (CN?) by a post‐synthetically altered metal–organic framework (MOF) has been achieved. A post‐synthetic modification was employed in the MOF to incorporate the specific recognition site with the CN? ion over all other anions, such as Cl?, Br?, and SCN?. The aqueous‐phase sensing and very low detection limit, the essential prerequisites for an effective sensory material, have been fulfilled by the MOF. Moreover, the present detection level meets the standard set by the World Health Organization (WHO) for the permissible limit of cyanide concentration in drinking water. The utilization of MOF‐based materials as the fluorometric probes for selective and sensitive detection of CN? ions has not been explored till now.  相似文献   

15.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2⋅(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm−2 at 0.55 V vs. RHE.  相似文献   

16.
As a new type of highly ordered porous crystalline material, metal‐organic frameworks (MOFs) have been extensively studied in many fields due to their high specific surface area and porosity, flexible modifiability and tailorability. After nearly 20 years of development, the synthesis of MOF materials has gradually evolved from exploration and trial to precise design. The synthesis method has also evolved from an early one‐step synthesis to the coexistence of various synthesis strategies, including functional‐oriented microstructural design optimization, pore size adjustment, and secondary structural unit modification, enabling MOF materials to expand their potential applications in many fields. In this review, we mainly discuss the pore regulation of function‐oriented MOF through different synthesis strategies, including (1) direct synthesis, (2) post‐synthesis modification (PSM), (3) building block replacement (BBR), (4) pore space partition (PSP), (5) construction of multi‐mesoporous MOF, (6) dynamic septal ligand insertion, and discuss the relationship between related performance optimization through framework structure and pore environment/size optimization.  相似文献   

17.
Hydrangea‐like NiCo‐based bimetal‐organic frameworks (NiCo‐MOF) are synthesized in DMF‐EtOH solution via a solvothermal method, using 4,4′‐biphenyldicarboxylic acid as a ligand. NiCo‐MOF having a highest capacity of 1056.6 F · g–1 at 0.5 A · g–1 and 457.7 F · g–1 even at 10 A · g–1 is achieved at a Ni/Co/BPDC molar ratio of 1:1:1, a temperature of 170 °C and a reaction time of 12 hours. It exhibits secondary 3D microsphere structures assembled by primary 2D nanosheet structures, good crystalline structure and good thermal stability below 350 °C in air. All the electrochemical data show that NiCo‐MOF has the pros and cons as supercapacitor electrode materials in aqueous electrolytes. On the one hand, NiCo‐MOF has a high capacity even at a high current density, low internal resistance, charge‐transfer resistance and ion diffusion impendence, owing to the ordered coordination structure, 2D nanosheet structure and 3D assembled microsphere structure of NiCo‐MOF. On the other hand, the cycling stability and rate capability are not ideal enough due to the hydrolysis of coordination bonds in aqueous electrolytes, especially, in alkaline solution. The good dispersion and high electrochemical activity of metal ions bring a high capacity for NiCo‐MOF, but they result in the poor stability of NiCo‐MOF. In the future work, finding a suitable organic electrolyte is an effective way to enhance the cycling stability of NiCo‐MOF as well as deriving more stable skeleton materials from NiCo‐MOF.  相似文献   

18.
Hierarchically porous carbon materials with high surface areas are promising candidates for energy storage and conversion. Herein, the facile synthesis of hierarchically porous carbons through the calcination of metal–organic framework (MOF)/chitosan composites is reported. The effects of the chitosan (CS) additive on the pore structure of the resultant carbons are discussed. The corresponding MOF/chitosan precursors could be readily converted into hierarchically porous carbons (NPC‐V, V=1, 2, 4, and 6) with much higher ratios of meso‐/macropore volume to micropore volume (Vmeso‐macro/Vmicro). The derived carbon NPC‐2 with the high ratio of Vmeso‐macro/Vmicro=1.47 demonstrates a high specific surface area of 2375 m2 g?1, and a high pore volume of 2.49 cm3 g?1, as well as a high graphitization degree, in comparison to its counterpart (NPC) without chitosan addition. These excellent features are favorable for rapid ion diffusion/transport, endowing NPC‐2 with enhanced electrochemical behavior as supercapacitor electrodes in a symmetric electrode system, corresponding to a high specific capacitance of 199.9 F g?1 in the aqueous electrolyte and good rate capability. Good cycling stability is also observed after 10 000 cycles.  相似文献   

19.
Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has been realized. CTGU‐15 made from the [Ni4(OH)4] cluster not only has very high BET surface area (3537 m2 g?1), but also exhibits bi‐microporous features with well‐defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU‐15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU‐15 (1:2) made from ketjen black (KB) and CTGU‐15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg?1 and excellent peak current density (29.8 mA cm?2) at low potential (0.6 V). The isostructural cobalt structure (CTGU‐16) has also been synthesized, further expanding the application potential of this material type.  相似文献   

20.
The low-cost, high specific surface area and porosity, controlled pore size, and chemical properties of metal–organic framework (MOF) materials have attracted much attention in the exploration of proton conduction. The method of chemically modifying MOF structures or introducing conductive medium into the holes can effectively improve the proton conductivities of the materials. Here, the structural tunability of ionic liquid (IL) and flexible MOF (fle-MOF) materials are matched to give full play to the conductivity of IL, the framework support, and the microporous effect of MOFs, which achieves the synergistic effect of performance and expands the temperature range of proton transfer. Three kinds of CS/IL@fle-MOF membranes were prepared by combining three fle-MOFs with 1-carboxymethyl-3-methylimidazole (CMMIM) in different proportions to obtain 15 pieces of membranes. The comparative analyses show that CS/IL@fle-MOF membranes have excellent proton conduction performance at a wider temperature range (263–353 K) and lower relative humidity (75% RH). Among them, the proton conductivities of CS/CMMIM@MIL-88A-25% and CS/CMMIM@MIL-88B-125% are up to 1.33 and 1.42 S cm−1 at 75% RH and 353 K, respectively; whereas those of CS/CMMIM@MIL-53(Fe)-75% and CS/CMMIM@MIL-88B-125% reach up to 2.1 × 10−3 and 1.28 × 10−3 S cm−1 at 75% RH and 263 K, respectively. The Ea of CS/CMMIM@fle-MOFs is in the range of 0.1–0.5 eV, suggesting that the proton transport follows predominantly the typical Grotthuss transfer mechanism. The results of this study indicate that the CS/CMMIM@fle-MOF membranes combinations offer great potential for the design of composite porous proton-conducting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号