首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel molybdenum(VI/V) POM-based self-constructed frameworks [MoVI12O242-O)12(trz)6(H2O)6] ⋅ 6Hma ⋅ 18H2O ( 1 , Htrz=1H-1,2,3-triazole, ma=methylamine), [MoVI7O142-O)8(trz)5(H2O)] ⋅ 7Hma ⋅ 5H2O ( 2 ), Na3[MoV6O62-O)9(Htrz)3(trz)3] ⋅ 7.5H2O ( 3 ) and [MoV8O82-O)12(Htrz)8] ⋅ 30H2O ( 4 ) have been covalently decorated with tri-coordinated deprotonated/protonated 1,2,3-triazoles. Channels with an inner diameter of 7.5 Å were found in 1 , whereas a tunnel composed of stacking molecules with an inner diameter of 4.1 Å along the b-axis exists in 2 ; it is occupied by free disordered methylamines, showing selective adsorption of O2 and CO2 at 25 °C. Obvious downfield shifts were observed by 13C NMR spectroscopies for methylamines inside the confined channels in 1 and 2 . There are diversified pores in 3 and 4 , which are formed by the molecules themselves and intermolecular accumulations. Adsorption tests indicate that 3 and 4 are fine adsorption materials for CH4 and CO2 under low pressure that rely on the environments built by the POMs. Correspondingly, 1 and 2 display reversible photoresponsive thermochromism that is subtlety influenced by the channels. The polyoxometalate organic frameworks (POMOFs) with multiple functional adsorptions are easy to assemble. Their photo-/thermoresponse properties offer a new pathway for the self-constructions of one-off hybrid materials that possess the good properties of both POMs and MOFs.  相似文献   

2.
We synthesized a high-nuclear isopolymolybdate cluster (n-Bu4N)6H2[{Mo24O48(OMe)32}{Mo24O52(OMe)28}2] ⋅ 25H2O ⋅ 6CH3CN (1) by using [Mo6O19]2− as the base precursor. Crystallographic characterization shows the cluster is composed of an anionic [{Mo24O48(OMe)32}]8− cage and two charge-neutral [{Mo24O52(OMe)28}] cages. Supported by the electrospray ionization mass spectrometry study, the polyoxoanion structural unit [Mo24O48(CH3O)27]3− demonstrates strong stability in acetonitrile solution. Moreover, 1 exhibits good proton conductivity of 1.79×10−3 S cm−1 at 358 K and 98 % relative humidity.  相似文献   

3.
This contribution focuses on complex [Mo2(H)2(μ-AdDipp2)2] ( 1 ) and tetrahydrofuran and pyridine adducts [Mo2(H)2(μ-AdDipp2)2(L)2] ( 1⋅thf and 1⋅py ), which contain a trans-(H)Mo≣Mo(H) core (AdDipp2=HC(NDipp2)2; Dipp=2,6-iPr2C6H3). Computational studies provide insights into the coordination and electronic characteristics of the central trans-Mo2H2 unit of 1 , with four-coordinate, fourteen-electron Mo atoms and ϵ-agostic interactions with Dipp methyl groups. Small size C- and N-donors give rise to related complexes 1⋅L but only one molecule of P-donors, for example, PMe3, can bind to 1 , causing one of the hydrides to form a three-centered, two-electron (3c-2e) Mo-H→Mo bond ( 2⋅PMe3 ). A DFT analysis of the terminal and bridging hydride coordination to the Mo≣Mo bond is also reported, along with reactivity studies of the Mo−H bonds of these complexes. Reactions investigated include oxidation of 1⋅thf by silver triflimidate, AgNTf2, to afford a monohydride [Mo2(μ-H)(μ-NTf2)(μ-AdDipp2)2] ( 4 ), with an O,O’-bridging triflimidate ligand.  相似文献   

4.
Two types of dendritically functionalized iron(II) porphyrins were prepared (Scheme) and investigated in the presence of 1,2‐dimethylimidazole (1,2‐DiMeIm) as the axial ligand as model systems for T(tense)‐state hemoglobin (Hb) and myoglobin (Mb). Equilibrium O2‐ and CO‐binding studies were performed in toluene and aqueous phosphate buffer (pH 7). UV/VIS Titrations (Fig. 4) revealed that the two dendritic receptors 1 ⋅ Fe II ‐1,2‐DiMeIm and 2 ⋅ Fe II ‐1,2‐DiMeIm (Fig. 2) with secondary amide moieties in the dendritic branching undergo reversible complexation (Fig. 5) with O2 and CO in dry toluene. Whereas the CO affinity is similar to that measured for the natural receptors, the O2 affinity is greatly enhanced and exceeds that of T‐state Hb by a factor of ca. 1500 (Table). The oxygenated complexes possess half‐lives of several h (Fig. 6). This remarkable stability originates from both dendritic encapsulation of the iron(II) porphyrin and formation of a H‐bond between bound O2 and a dendritic amide NH moiety (Fig. 11). Whereas reversible CO binding was also observed in aqueous solution (Fig. 10), the oxygenated iron(II) complexes are destabilized by the presence of H2O with respect to oxidative decay (Fig. 9), possibly as a result of the weakening of the O2⋅⋅⋅H−N H‐bond by the competitive solvent. The comparison between the two dendrimers with amide branchings and ester derivative 3 ⋅ Fe II ‐1,2‐DiMeIm (Fig. 2), which lacks H‐bond donor centers in the periphery of the porphyrin, further supports the role of H‐bonding in stabilizing the O2 complex against irreversible oxidation. All three derivatives bind CO reversibly and with similar affinity (Fig. 8) in dry toluene, but the oxygenated complex of 3 ⋅ Fe II ‐1,2‐DiMeIm undergoes much more rapid oxidative decomposition (Fig. 7).  相似文献   

5.
Four new molybdenum complexes [MoVIO2(L1)(Him)] ( 1 ), [MoVIO2(L1)(3‐MepzH] ( 2 ), [MoVIO2(L2)(3‐MepzH)] ( 3 ), and [(MoVIO2)2(μ‐L3)(MeOH)2] ( 4 ) were synthesized and characterized by IR, NMR, ESI‐MS, and single‐crystal structure analysis [H2L1 = 2‐(salicylideneamino)‐2‐methyl‐1‐propanol, H2L2 = 2‐(3‐methoxysalicylideneamino)‐2‐methyl‐1‐propanol, H4L3 = 1, 7‐bis(salicylidene)dihydrazide malonic acid, Him = imidazole and 3‐MepzH = 3‐methylpyrazole]. In all four structures the molybdenum atom has a distorted octahedral coordination with the three meridional donor atoms from the Schiff base di‐ or tetraanion (L1, 2)2—/(L3)4— and one oxo group occupying the sites of the equatorial plane. The other oxo group and the azole or methanol molecule occupy the apical sites. In 1—3 two centrosymmetrically related molecules form a hydrogen‐bonded pair through the (azole)N‐H···O(alkoxo) interaction. Additional crystal packing appears to be controlled mostly by π stacking between the aromatic rings of the salicyl moiety. ESI‐MS investigations reveal that the integrity of complexes 1—4 is largely retained in methanol solution. At the same time evidence is provided that di‐ to tetranuclear oligomers of formula [{MoVIO2(L)}x] and [{MoVIO2(L)}x(3‐MepzH)] with L = L1, L2, x = 2, 3, 4 are present simultaneously with 2 and 3 in methanol solution, respectively the tetranuclear species [{(MoVIO2)2(L3)}2] with 4 .  相似文献   

6.
Five mixed‐metal mixed‐valence Mo/V polyoxoanions, templated by the pyramidal SeO32? heteroanion have been isolated: K10[MoVI12VV10O58(SeO3)8]?18 H2O ( 1 ), K7[MoVI11VV5VIV2O52(SeO3)]?31 H2O ( 2 ), (NH4)7K3[MoVI11VV5VIV2O52(SeO3)(MoV6VV‐ O22)]?40 H2O ( 3 ), (NH4)19K3[MoVI20VV12VIV4O99(SeO3)10]?36 H2O ( 4 ) and [Na3(H2O)5{Mo18?xVxO52(SeO3)} {Mo9?yVyO24(SeO3)4}] ( 5 ). All five compounds were characterised by single‐crystal X‐ray structure analysis, TGA, UV/Vis and FT‐IR spectroscopy, redox titrations, and elemental and flame atomic absorption spectroscopy (FAAS) analysis. X‐ray studies revealed two novel coordination modes for the selenite anion in compounds 1 and 4 showing η,μ and μ,μ coordination motifs. Compounds 1 and 2 were characterised in solution by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed characteristic patterns showing distribution envelopes corresponding to 2? and 3? anionic charge states. Also, the isolation of these compounds shows that it may be possible to direct the self‐assembly process of the mixed‐metal systems by controlling the interplay between the cation “shrink‐wrapping” effect, the non‐conventional geometry of the selenite anion and fine adjustment of the experimental variables. Also a detailed IR spectroscopic analysis unveiled a simple way to identify the type of coordination mode of the selenite anions present in POM‐based architectures.  相似文献   

7.
The title compound, (C3H5N2)4[β‐Mo8O26], has been prepared from imidazole octamolybdate, (C3H5N2)4[(C3H4N2)2(γ‐Mo8O26)], which was described previously. The γ→β conversion is produced in the presence of Cu(NO3)2·3H2O and is reported for the first time in this work. The X‐ray structure analysis confirmed the presence of the [Mo8O26]4? anion. The structure consists of β‐Mo8O26 polyanions and imidazolium cations. These cations are linked to the terminal and bridging O atoms of the anion by hydrogen bonds.  相似文献   

8.
The arsenomolybdates [H2As2Mo6O26(H2O)] · (H2biyb)2 · 2H2O ( 1 ) and [H3As2Mo6O26] · (H3pt)2 ( 2 ) [biyb = 1,4‐bis(imidazol‐1‐ylmethyl)benzene, pt = 4′‐(3′′‐pyridyl)‐2,3′:6′3′′‐terpyridine] were synthesized via hydrothermal method. The structures of the compounds were characterized by single‐crystal X‐ray diffraction analyses, elemental analyses, IR spectroscopy, and TG analysis. Compounds 1 and 2 exhibit two isomeric forms of [HxAs2Mo6O26](6–x)–. The structure of 1 is constructed from the B‐type [H2As2Mo6O26(H2O)]4– polyanions and free biyb ligands via weak interactions to form 3D supramolecular framework with a {3 · 4 · 53 · 6}{3 · 43 · 52}{3 · 5 · 6}2{3 · 52}2 topology structure. In compound 2 , the A‐type [H3As2Mo6O26]3– clusters are surrounded by pt ligands through hydrogen bond interactions forming 3D supramolecular framework with a {43 · 63}2{46 · 66 · 83} topology structure. The electrochemical behaviors, electrocatalytic and photocatalytic activities of 1 and 2 are detected.  相似文献   

9.
Through electrodepositing Prussian blue (PB) and chitosan (CS), then casting Pt hollow nanospheres (HN‐Pt) and assembling CA19‐9 antibody on the electrode surface, an immunosensor was achieved. A new signal amplification strategy based on PB and HN‐Pt toward the electrocatalytic reduction of H2O2 was employed when performing the determination. The resulting immunosensor showed a high sensitivity, broad linear response to carbohydrate antigen 19‐9 (CA19‐9) in two ranges from 0.5 to 30 and 30 to 240 U mL?1 with a low detection limit of 0.13 U mL?1 (S/N=3). Moreover, it displayed good reproducibility and stability, and would be potentially attractive for clinical immunoassay of CA19‐9.  相似文献   

10.
5‐Coordinated methoxybenzylidene complexes M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3)2 (Ar=2,6‐iPr2C6H3; tBuF3=CMe2(CF3)) of Mo ( 1mMo ) and W ( 1mW ) were synthesized by cross‐metathesis from the corresponding neophylidene/neopentylidene precursors and o‐methoxystyrene. 1mMo and 1mW were grafted onto the surface of silica partially dehydroxylated at 700 °C to give well‐defined silica‐supported alkylidenes (≡SiO)M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3) (M=Mo ( 1Mo ), W ( 1W )). Supported methoxybenzylidene complexes were tested in metathesis of cis‐4‐nonene, 1‐nonene, and ethyl oleate, and compared to their molecular precursors and supported classical analogs (≡SiO)M(=NAr)(=CHCMe2R)(OtBuF3) (M=Mo, R=Ph ( 2Mo ), M=W, R=Me ( 2W )). Both grafted complexes 1Mo and 1W show significantly better performance as compared to their molecular precursors 1mMo and 1mW but are less efficient than the classical 4‐coordinated alkylidenes 2Mo and 2W . Noteworthy, both 1Mo and 1W can reach equilibrium conversion in metathesis of cis‐4‐nonene at catalyst loadings as low as 50 ppm.  相似文献   

11.
The reactivity of the [MoV2O4]2+ dinuclear unit with the [O3P(C(CH3)(OH))PO3]4? etidronate ligand has been investigated. Three complexes have been isolated and characterized by IR spectroscopy, elemental analysis and single crystal X-Ray diffraction studies. Structural determination of the tetranuclear compound (CN3H6)6[(MoV2O4)2(O3P(C(CH3)O)PO3)2]·12H2O (1) revealed that the hydroxo group of the etidronate ligand can be deprotonated in presence of MoV even in acidic media. It follows that its coordination mode thus differs from that of the methylenediphosphonate ligand [O3P(CH2)PO3]4?, which reactivity with MoV has been previously widely studied. In contrast, no such deprotonation of the hydroxo group is observed in the (NH4)18[(MoV2O4)6(OH)6(O3P(C(CH3)(OH))PO3)6]·35H2O complex 2. This species contains a dodecanuclear core analogous to the one previously found in the [(MoV2O4)6(OH)6(O3PCH2PO3)6]18? methylenediphosphonato polyanion. In 2, six interconnected {(MoV2O4)(O3P(C(CH3)(OH))PO3)} units form a cyclohexane-like ring in a chair conformation. In the (CN3H6)18Na3[(MoV2O4)7(O3P(C(CH3)(OH))PO3)7(CH3COO)7]·5CH3COONa 52H2O compound 3, seven {(MoV2O4)(O3P(C(CH3)(OH))PO3)(CH3COO)} units are connected, forming an almost planar tetradecanuclear wheel. This compound represents the largest homometallic MoV polyoxometalate cyclic system reported to date. Finally, 31P NMR studies revealed that only complex 1 is stable in aqueous solution.  相似文献   

12.
The propulsion of photocatalytic hydrogen (H2) production is limited by the rational design and regulation of catalysts with precise structures and excellent activities. In this work, the [MoOS3]2− unit is introduced into the CuI clusters to form a series of atomically-precise MoVI−CuI bimetallic clusters of [Cu6(MoOS3)2(C6H5(CH2)S)2(P(C6H4R)3)4] ⋅ xCH3CN (R=H, CH3, or F), which show high photocatalytic H2 evolution activities and excellent stability. By electron push-pull effects of the surface ligand, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of these MoVI−CuI clusters can be finely tuned, promoting the resultant visible-light-driven H2 evolution performance. Furthermore, MoVI−CuI clusters loaded onto the surface of magnetic Fe3O4 carriers significantly reduced the loss of catalysts in the collection process, efficiently addressing the recycling issues of such small cluster-based catalyst. This work not only highlights a competitively universal approach on the design of high-efficiency cluster photocatalysts for energy conversion, but also makes it feasible to manipulate the catalytic performance of clusters through a rational substituent strategy.  相似文献   

13.
A highly selective and sensitive catalytic method for the determination of trace amounts of titanium(IV) was developed. The method is based on the catalytic effect of titanium(IV) on the methylene blue‐ascorbic acid redox reaction. The reaction was followed spectrophotometrically by measuring the change in absorbance of methylene blue at 665 nm, 5 minutes after the initiation of the reaction. In this study experimental parameters were optimized and the effect of the presence of various cations and some anions on the determination of titanium(IV) was examined. The calibration graph was linear in the range of 3‐25 ng mL?1 of titanium(IV). The relative standard deviation for the determination of 10 and 20 ng mL?1 of titanium(IV) were 2.64% and 1.51%, respectively (n = 8). The detection limit calculated from three times of standard deviation of blank 3Sb was 0.6 ng mL?1. The method was successfully applied to the determination of titanium(IV) in tap water and ore samples.  相似文献   

14.
Two new reduced molybdenum pyrophosphates, Na28[Na2{(Mo2O4)10(P2O7)10(HCOO)10}]·108H2O ( 1 ) and Na22(H3O)2[Na4{(Mo2O4)10(P2O7)10(CH3COO)8(H2O)4}]·91H2O ( 2 ) have been synthesized and characterized by single‐crystal X‐ray diffraction. Red crystals of 1 are triclinic, space group , with a = 17.946(4) Å, b = 18.118(4) Å, c = 21.579(4) Å, α = 114.47(3)°, β = 93.54(3)°, γ = 114.39(3)° and V = 5581.8(19) Å3, and orange crystals of 2 are monoclinic, space group P21/n, with a = 21.467(4) Å, b = 23.146(5) Å, c = 24.069(5) Å, β = 101.76(3)° and V = 11708(4) Å3. They are both constructed by MoV dimers ({Mo2O4(OP)4(HCOO)} in 1 , {Mo2O4(OP)4(CH3COO)} and {Mo2O4(OP)4(H2O)2} in 2 ) and pyrophosphoric groups. Their structures can be described as two interconnected nonequivalent wheels which are approximately perpendicular, delimiting a large cavity. The larger wheel contains six MoV dimers, while the smaller one has four dimers.  相似文献   

15.
The synthesis of MoVI bisphosphonates (BPs) complexes in the presence of a heterometallic element has been studied. Two different BPs have been used, the alendronate ligand, [O3PC(C3H6NH3)(O)PO3]4? (Ale) and a new BP derivative with a pyridine ring linked to the amino group, [O3PC(C3H6NH2CH2C5H4N)(O)PO3]4? (AlePy). Three compounds have been isolated, a tetranuclear MoVI complex with CrIII ions, (NH4)5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Cr]·11H2O (Mo4(Ale)2Cr), its MnIII analogue, (NH4)4.5Na0.5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Mn]·9H2O (Mo4(Ale)2Mn), and a cocrystal of two polyoxomolybdates, (NH4)10Na3[(Mo2O6)2(O3PC(C3H6NH2CH2C5H4N)(O)PO3)2Cr]2[CrMo6(OH)6O18]·37H2O ([Mo4(AlePy)2Cr]2[CrMo6]). In this latter compound an Anderson-type POM [CrMo6(OH)6O18]3? is sandwiched between two tetranuclear MoVI complexes with AlePy ligands. The protonated triply bridging oxygen atoms bound to the central CrIII ion of the Anderson anion develop strong hydrogen bonding interactions with the oxygen atoms of the bisphosphonate complexes. The UV–Vis spectra confirm the coexistence in solution of both POMs. Cyclic voltammetry experiments have been performed, showing the reduction of the Mo centers. In strong contrast with the reported MoVI BP systems, the presence of trivalent cations in close proximity to the MoVI centers dramatically impact the potential solid-state photochromic properties of these compounds.  相似文献   

16.
《化学:亚洲杂志》2018,13(19):2897-2907
In the presence of the larger [H2N(CH3)2]+ and K+ counter cations as structure‐stabilizing agents, a class of unprecedented selenium and lanthanide (Ln) simultaneously bridging tetra‐vacant Dawson‐like selenotungstate aggregates [H2N(CH3)2]2Na9K2H19{[Ln4W4 Se4O22(H2O)5](Se2W14O52)2}2 ⋅ 60 H2O [Ln=TbIII ( 1 ), DyIII ( 2 ), HoIII ( 3 ), ErIII ( 4 ), TmIII ( 5 ), YbIII ( 6 )] have been obtained by the one‐pot assembly reaction of Na2WO4 ⋅ 2 H2O, Ln(NO3)3 ⋅ 6 H2O, and Na2SeO3 under moderately acidic aqueous conditions and the complexes were structurally characterized by elemental analyses, IR spectra, single‐crystal X‐ray diffraction, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. It should be noted that the appropriate molar ratio of Se/W is extremely important in the formation of 1 – 6 and can effectively ameliorate the yield of 1 – 6 . Moreover, dimethylamine hydrochloride is also indispensable and plays a considerably important role in improving the solubility of Ln ions and stabilizing the structures of 1 – 6 . The main polyoxoanion skeletons of 1 – 6 are constructed from two sandwich‐type tetra‐vacant Dawson‐like {[Ln4W4Se4O22(H2O)5](Se2W14O52)2}16− half‐units linked through two W‐O‐Ln bridges. The sandwich‐type half‐unit comprises two tetra‐vacant Dawson‐like [Se2W14O52]12− fragments encapsulating a unique dodecanuclear Se‐Ln‐W [Ln4W4Se4O22(H2O)5]8+ oxo cluster. Their solid‐state visible and NIR fluorescent properties and lifetime decay behaviors were measured and their solid‐state luminescent spectra mainly demonstrate the characteristic emission bands of Ln3+ ions. Moreover, the dominant wavelengths, the color purity, and correlated color temperatures of 1 – 5 have been also calculated. In addition, the luminous flux values of 1 – 5 are 2031, 6992, 3071, 921, and 477 lumen, respectively.  相似文献   

17.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

18.
Two new compounds based on O3PCH2PO34? ligands and {MoV2O4} dimeric units have been synthesized and structurally characterized. The dodecanuclear MoV polyoxomolybdate species in (NH4)18[(MoV2O4)6(OH)6(O3PCH2PO3)6]?33 H2O ( 1 ) is a cyclohexane‐like ring in a chair conformation with pseudo S6 symmetry. In the solid state, the wheels align side by side, thus delimiting large rectangular voids. The hexanuclear anion in Na8[(MoV2O4)3(O3PCH2PO3)3(CH3AsO3)]? 19 H2O ( 2 ) has a triangular framework and encapsulates a methylarsenato ligand. 31P NMR spectroscopic analysis revealed the stability of 2 in various aqueous media, whereas the stability of 1 depends on the nature of the cations present in solution. It has been evidenced that the transformation of 1 into 2 occurs in the presence of CH3AsO32? ions. This behavior shows that 1 can be used as a new precursor for the synthesis of MoV/diphosphonate systems. The two complexes were very efficient both as reductants of Pt and Pd metallic salts and as capping agents for the resulting Pt0 and Pd0 nanoparticles. The size of the obtained nanoparticles depends both on the nature of the polyoxometalate (POM; i.e., 1 or 2 ) and on the [metallic salt]/[POM] ratio. In all cases, X‐ray photoelectron spectroscopy (XPS) measurements have revealed the presence of MoVI species that stabilize the nanoparticles and the absence of MoV moieties. Diffuse‐reflectance FTIR spectra of the Pt nanoparticles show that the capping MoVI POMs are identical for both systems and contain the diphosphonato ligand. The colloidal solutions do not show any precipitate and the nanoparticles remain well‐dispersed for several months. The electrochemical reduction of MoV species was studied for 2 . Cyclic voltammetry alone and electrochemical quartz crystal microbalance coupled with cyclic voltammetry show the deposition of a film on the electrode surface during this reduction.  相似文献   

19.
The tetrapropylammonium (Pr4N+) salt of [(SeO3)2(P2O7)Mo30O90]8? was prepared from a 75 mM MoVI–2.8 mM P2O74?–5.6 mM SeO32?–0.95 M HCl–60% (v/v) CH3CN system, where [(P2O7)Mo18O54]4? and [H6(SeO3)2Mo15O48]4? are first formed, then being spontaneously fused into [(SeO3)2(P2O7)Mo30O90]8?. The [(SeO3)2(P2O7)Mo30O90]8? anion may be isotypic with [(HPO3)2(P2O7)Mo30O90]8?, in which each side of a (P2O7)Mo12O42 fragment is capped by a B-type (HPO3)Mo9O24 unit derived from [H6(HPO3)2Mo15O48]4?. [(XO3)2(P2O7)Mo30O90]8? (X = HP, Se) have the same type of 30-molybdo framework as [(P2O7)2Mo30O90]8?, previously isolated by Koltz. These three 30-molybdo complexes with the same ionic charge of ?8 constitute a new class of polyoxometallates and have common properties of undergoing a two-electron reduction in the absence of H+.  相似文献   

20.
An organic‐inorganic material (NH4)2(MimAM)40[Mo132O372(CH3COO)30(H2O)72] have been synthesized by reacting [(NH4)42[MoVI72 MoV60O372(CH3COO)30(H2O)72] with the ionic liquid 3‐Aminoethyl‐1‐methylimidazolium bromide. The catalyst showed remarkably a high catalytic performance in the oxidation of dibenzothiophene (DBT) derivatives with H2O2 35% as a safe and green oxidant. The main parameters affecting the process including catalyst, acid additive, hydrogen peroxide amounts and temperature have been investigated in detail. Sulfur removal of DBT in n‐heptane reached to 98.3% yield at 40 °C using 2.5 mmol H2O2 and 100 mg of (NH4)2(MimAM)40[Mo132O372(CH3COO)30(H2O)72] after 90 min. Under the optimal conditions, BT (benzothiophene), DBT (dibenzothiophene) and 4,6‐DMDBT (4,6‐dimethyl‐dibenzothiophene) achieved high desulfurization efficiency. Our results showed that the reactivity order of different model sulfur compounds are thiophene <4,6‐dimethyl dibenzothiophene< dibenzothiophene. The catalysts could be easily separated from the reaction solution by simple filtration and recycled for several times without loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号