首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A “niche” topic in the past decade, the asymmetric C? H bond activation has been attracting growing interest over the last few years. Particularly significant advances have been achieved in the field of direct, stereoselective transformations of C(sp2)? H bonds. This Concept article intends to showcase different types of asymmetric C(sp2)? H bond activation reactions, emphasising both the nature of the stereo‐discriminating step and the variability of valuable scaffolds that could be rapidly constructed by means of such strategies.  相似文献   

2.
The first copper‐catalyzed intramolecular C(sp3) H and C(sp2) H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3) H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2) H amidation. Kinetic isotope effect (KIE) studies indicated that C H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

3.
An asymmetric organocatalytic direct C H/C H oxidative coupling reaction of N1,N3‐diphenylmalonamides has been well established by using chiral organoiodine compounds as catalysts, wherein four C H bonds were stereoselectively functionalized to give structurally diverse spirooxindoles with high levels of enantioselectivity. More importantly, the findings indicated that chiral hypervalent organoiodine reagents can serve as alternative catalysts for the creation of enantioselective functionalization of inactive C H bonds.  相似文献   

4.
Successful benzylic C(sp3) H trifluoromethylation, pentafluoroethylation, and heptafluoropropylation of six‐membered heteroaromatic compounds were achieved as the first examples of a practical benzylic C(sp3) H perfluoroalkylation. In these reactions, BF2CnF2n+1 (n=1–3) functioned as both a Lewis acid to activate the benzylic position and a CnF2n+1 (n=1–3) source. The perfluoroalkylation proceeded at both terminal and internal positions of the alkyl chains. Perfluoroalkylated products were obtained in moderate to excellent yields, even on gram scale, and in a sequential procedure without isolation of the intermediates. By using this method, trifluoromethylation of a bioactive compound, as well as introduction of a CF3 group into a bioactive molecular skeleton, proceeded regioselectively.  相似文献   

5.
To improve the emission and excited‐state properties of luminescent cyanometalates, new classes of highly solvatochromic luminescent cyanoruthenium(II) and cyanoruthenate(II) complexes of the general formulae [Ru(PR3)2(CN)2($\widehat{NN}$ )] and K[Ru(PR3)(CN)3($\widehat{NN}$ )], respectively, were developed. These complexes could be readily synthesized through the ligand‐substitution reaction of K2[Ru(CN)4(PR3)2] with a diimine ligand. The geometrical isomerism of these complexes was characterized by using various spectroscopic techniques. Their photophysical properties, solvatochromism, and electrochemistry have also been investigated. Our detailed study showed that many of these complexes exhibited extremely environmentally sensitive emissions and significantly improved emission quantum efficiencies and lifetimes compared with the well‐studied tetracyanoruthenate systems.  相似文献   

6.
The first enantioselective α‐allylation of aldehydes with terminal alkenes has been realized by combining asymmetric counteranion catalysis and palladium‐catalyzed allylic C H activation. This method can tolerate a wide scope of α‐branched aromatic aldehydes and terminal alkenes, thus affording allylation products in high yields and with good to excellent levels of enantioselectivity. Importantly, the findings suggest a new strategy for the future creation of enantioselective C H/C H coupling reactions.  相似文献   

7.
Nitrogenation by direct functionalization of C H bonds represents an important strategy for constructing C N bonds. Rhodium(III)‐catalyzed direct amidation of unactivated C(sp3) H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp3) H bonds are amidated under rhodium catalysis in high efficiency using 3‐substituted 1,4,2‐dioxazol‐5‐ones as the amide source. The protocol broadens the scope of rhodium(III)‐catalyzed C(sp3) H activation chemistry, and is applicable to the late‐stage functionalization of natural products.  相似文献   

8.
Nitrogenation by direct functionalization of C H bonds represents an important strategy for constructing C N bonds. Rhodium(III)‐catalyzed direct amidation of unactivated C(sp3) H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp3) H bonds are amidated under rhodium catalysis in high efficiency using 3‐substituted 1,4,2‐dioxazol‐5‐ones as the amide source. The protocol broadens the scope of rhodium(III)‐catalyzed C(sp3) H activation chemistry, and is applicable to the late‐stage functionalization of natural products.  相似文献   

9.
A quinoline‐based ligand effectively promotes the palladium‐catalyzed borylation of C(sp3) H bonds. Primary β‐C(sp3) H bonds in carboxylic acid derivatives as well as secondary C(sp3) H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)‐ and rhodium(I)‐catalyzed C H borylation reactions in terms of scope and operational conditions.  相似文献   

10.
A practical and efficient method for the direct trifluoromethylthiolation of unactivated C(sp3) H bonds by AgSCF3/K2S2O8 under mild conditions is described. The reaction has a good functional‐group tolerance and good selectivity. Initial mechanistic investigations indicate that the reaction may involve a radical process in which K2S2O8 plays key roles in both the activation of the C(sp3) H bond and the oxidation of AgSCF3.  相似文献   

11.
BCl3 is an inexpensive electrophile which induces the borylative cyclization of a wide range of substituted alkynes to regioselectively form polycycles containing synthetically versatile C(sp2) boronate esters. It proceeds rapidly, with good yields and is compatible with a range of functional groups and substitution patterns. Intermolecular 1,2‐carboboration of alkynes is also achieved using BCl3 to generate trisubstituted vinyl boronate esters.  相似文献   

12.
An unprecedented rhodium(III)‐catalyzed regioselective redox‐neutral annulation reaction of 1‐naphthylamine N‐oxides with diazo compounds was developed to afford various biologically important 1H‐benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by‐products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp3) H bond and C(sp2) H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)‐catalyzed coupling of readily available tertiary aniline N‐oxides with α‐diazomalonates was also developed under external oxidant‐free conditions to access various aminomandelic acid derivatives by an O‐atom‐transfer reaction.  相似文献   

13.
In sharp contrast to the gold‐catalyzed reactions of alkynes/allenes with nucleophiles, gold‐catalyzed oxidative cross‐couplings and especially C H/C H cross‐coupling have been under represented. By taking advantage of the unique redox property and carbophilic π acidity of gold, this work realizes the first gold‐catalyzed direct C(sp3) H alkynylation of 1,3‐dicarbonyl compounds with terminal alkynes under mild reaction conditions, with subsequent cyclization and in situ oxidative alkynylation. A variety of terminal alkynes including aryl, heteroaryl, alkenyl, alkynyl, alkyl, and cyclopropyl alkynes all successfully participate in the domino reaction. The protocol offers a simple and region‐defined approach to 3‐alkynyl polysubstituted furans.  相似文献   

14.
The cobalt‐catalyzed alkoxylation of C(sp2) H bonds in aromatic and olefinic carboxamides has been developed. The reaction proceeded under mild conditions in the presence of Co(OAc)2⋅4H2O as the catalyst and tolerates a wide range of both alcohols and benzamide substrates, including even olefinic carboxamides. In addition, this reaction is the first example of the direct alkoxylation of alkenes through C H bond activation.  相似文献   

15.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C H bond functionalization process. The reaction favors predominantly the C H bonds of β‐methyl groups over the unactivated methylene C H bonds. Moreover, a preference for activating sp3 C H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C H bonds was also observed in the cyclometalation step. Additionally, sp3 C H bonds of unactivated secondary sp3 C H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

16.
Phosphine‐assisted C? H activation of the methyl group of 2‐methylimidazolium compounds led to a series of iridium, rhodium, and palladium complexes of 2‐methyleneimidazolines. Experimental results confirmed that the product of methyl C? H activation is the kinetic product, whereas the aryl C? H activation product is the thermodynamic product (see scheme).

  相似文献   


17.
18.
Transition‐metal‐catalyzed C? H activation has recently emerged as a powerful tool for the functionalization of organic molecules. While many efforts have focused on the functionalization of arenes and heteroarenes by this strategy in the past two decades, much less research has been devoted to the activation of non‐acidic C? H bonds of alkyl groups. This Minireview highlights recent work in this area, with a particular emphasis on synthetically useful methods.  相似文献   

19.
Highly chemoselective intramolecular amination of propargylic C(sp3) H bonds has been demonstrated for N‐bishomopropargylic sulfamoyl azides through cobalt(II)‐based metalloradical catalysis. Supported by D2h‐symmetric amidoporphyrin ligand 3,5‐DitBu‐IbuPhyrin, the cobalt(II)‐catalyzed C H amination proceeds effectively under neutral and nonoxidative conditions without the need of any additives, and generates N2 as the only byproduct. The metalloradical amination is suitable for both secondary and tertiary propargylic C H substrates with an unusually high degree of functional‐group tolerance, thus providing a direct method for high‐yielding synthesis of functionalized propargylamine derivatives.  相似文献   

20.
Alkylaryl‐ and alkylheteroarylketones, including those with condensed aromatic moieties, are readily vinylated with arylacetylenes (KOH/DMSO, 100 °C, 1 h) to give regio‐ and stereoselectively the (E)β‐γ‐ethylenic ketones ((E)‐3‐buten‐1‐ones) in 61–84 % yields and with approximately 100 % stereoselectivity. This vinylation represents a new C(sp3)? C(sp2) bond‐forming reaction of high synthetic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号