首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work Strontium was separated selectively form, Pd2+, Ni2+ and Ca3+ using anionic resins of Amberlite type IRA-900 and IRA-410 from nitrate medium. The Separation of strontium by strongly basic anion exchangers IRA-410 and IRA-900 from simulated waste containing, Sr2+, Eu3+, Ce3+, Pd2+, Rh3+, Ru3+, VO2 2+, Fe3+, Cr3+, Ni2+, Al3+, Ca2+, and Cs+, in K2SO4/nitrate medium which adsorbed as strontium sulphate complex was achieved through ligand- ligan exchange. The elution of strontium carried out via “loading” the column with a solution of 0.03N EDTA in presence of 0.1N NaNO3 at pH7 where Sr2+ has low Kd value. An inductively Coubled Plasma — Optical Emission Spectrometry (ICP — OES) of ARL type model 3520, was used for elemental analysis.  相似文献   

3.
Glyphosate is the active component of one of the top‐selling herbicides, which is also a potent EPSP synthase inhibitor. The herbicide is absorbed by living tissue and translocated via the phloem, to plant roots and rhizomes. When applied directly into the soil it has low activity, due to the high adsorption by soil constituents. Understanding the specific interactions between metals in the soil and glyphosate is the main step in understanding the low activity of the herbicide when applied directly into the ground and not pulverized. We can observe there is a stability order for both tetrahedral and octahedral complexes between glyphosate and metals: Zn>Cu>Co>Fe>Cr>Al>Ca>Mg. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
Surface parameters of the activated charcoal were measured using precise instrumental techniques for dehydration, carbon content, trace metals impurities, anions, bulk, tap and true densities, surface area, pore volume, porosity and average particle diameter. The adsorption of Sr2+, Ce3+, Sm3+, Gd3+, Th4+ and UO 2 2+ ions on activated charcoal from aqueous solution was studied as a function of temperature. Thermodynamic parameters such as HH 0 and S 0 were calculated from the slopes and intercepts of the linear variation of lnK 1 vs. 1/T, whereK 3 is obtained from Langmuir equation. The results show endothermic heats of adsorption, but negative free energy values indicate that the adsorption process of metal ions on activated charcoal is favored at high temperature. The value of isosteric heat of adsorption, calculated from the Clausius-Clapeyron equation, shows that the surface of the activated charcoal is heterogeneous with respect to activity. A wavelength dispersive x-ray fluorescence spectrometer was used for measuring the concentration of metal ions.  相似文献   

6.
Proton-ligand dissociation and metal-ligand formation constants of 2-amino-4-chloro-6-[alpha-(phenyl)ethylidenehydrazino]pyrimidine; (AHP) and its p-chloro (ClAHP) and p-methoxy (OMeAHP) derivatives (Str.I&II) with Mn2+, Co2+ Ni2+, Cu2+, Zn2+, Cd2+, UO2(2+), Th4+, Ce3+ and Pr3+ ions have been evaluated potentiometrically in 75% (v/v) dioxane-water and 0.1 mol dm(-3) KNO3. The thermodynamic functions (deltaG, deltaH and deltaS) for the complexation of OMeAHP were evaluated and discussed. The effect of the temperature, dielectric constant of the solvents, mole fraction of dioxane and ionic strength of the medium on the stability of Pr3+-complexes show that the stability of the chelates increases by increasing both the electron repelling property of the substituents and the organic solvent content, and by decreasing the temperature, the ionic strength and the dielectric constant of the medium.  相似文献   

7.
The electron capture dissociation (ECD) and collision-induced dissociation (CID) of complexes of polyamidoamine (PAMAM) dendrimers with metal ions Ag+, Cu2+, Zn2+, Fe2+, and Fe3+ were determined by Fourier transform ion cyclotron resonance mass spectrometry. Complexes were of the form [PD + M + mH]5+ where PD = generation two PAMAM dendrimer with amidoethanol surface groups, M = metal ion, m = 2−4. Complementary information regarding the site and coordination chemistry of the metal ions can be obtained from the two techniques. The results suggest that complexes of Fe3+ and Cu2+ are coordinated via both core tertiary amines, whereas coordination of Ag+ involves a single core tertiary amine. The Zn2+ and Fe2+ complexes do not appear to involve coordination by the dendrimer core.  相似文献   

8.
The structures and energies of complexes obtained upon interaction between glutathione (GSH) and alkali (Li+, Na+, K+), or alkaline earth metal (Be2+, Mg2+, Ca2+), or group IIIA (Al3+) cations were studied using quantum chemical density functional theory. The characteristics of the interactions between GSH and the metal cations at different nucleophilic sites of GSH were examined selecting systematically, both mono- and multi-coordinating were taken into account. The results indicated that the heteroatom of GSH, the radius and charge of metal ion, and the coordination number of the metal cation with the ligand played important roles in determining the stability of these complexes. Moreover, the intramolecular hydrogen migration in GSH could be promoted by the metal cations during coordination reaction. Furthermore, the Al3+ cation might catalyze the decarboxylation reaction and stimulate the formation of covalent bond between S atom and adjacent O atom of GSH.  相似文献   

9.
Absorption and fluorescence spectra of Sn2+ and Sb3+ in borax, phosphate, and germanate glasses were measured in the temperature range 87–295°K. Fluorescence decay times of these ions in borax glass at 87°K was a single exponent with τ ≈ 6–11 μsec. At 293°K, two decay times were resolved in the range of 50–2000 nsec. The nonexponential behavior is interpreted by the repopulation of the 3P1 level from the 3P0 level. The temperature dependence of fluorescence and the low values of quantum efficiencies of fluorescence are explained by means of the configurational coordinate diagram model.  相似文献   

10.
The adsorption of naturally occurring radionuclides (UO2 2+, Tl+, Pb2+, Ra2+, Bi3+ and Ac3+) onto zeolite (Z) and polyacrylamide-zeolite composite (PAA-Z) and its modified composition by phytic acid (Z-Phy and PAA-Z-Phy) were investigated. Adsorption parameters were derived from the Langmuir and Freundlich fits to adsorption isotherms of the ions studied. The adsorption isotherms were of L and H types. The adsorption capacity of Z decreased by PAA inclusion, but the Phy modification of PAA-Z increased the capacity back to that of Z. The Phy modification made the adsorption spontaneity at least ten times better than in the absence of Phy. This investigation showed that the zeolite, as one of the most abundant natural materials and commonly used adsorbent can also be used for the removal of UO2 2+ and, in the PAA-Z form, of the studied radionuclides. The usage of Z, as PAA-Z and its Phy modification provide research materials which possess adequate practicality and effectiveness in studies of adsorption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Pyrochlore titanate oxides, R2Ti2O7(R=Gd3+, Tb3+, Dy3+), were synthesized under mild hydrothermal conditions. The crystal growth of pyrochlore titanate oxides and taking place of chemical reaction in the hydrothermal processing were sensitive to the alkalinity, temperature, reaction time, the nature of the rare earth ion and the composition of initial reaction mixture. The as-prepared samples were characterized by powder X-ray diffraction, scanning electron microscopy, Raman spectrum and variable temperature dc magnetic susceptibility(SQUIDS). The magnetic studies gave 7.29×10–23 A•m2/Gd3+ and –8.28 K, 8.75×10–23 A•m2 /Tb3+ and –19.7 K, and 8.85×10–23 A•m2/Dy3+ and 0.84 K effective moments and Weiss constants for Gd2Ti2O7, Tb2Ti2O7 and Dy2Ti2O7, respectively.  相似文献   

12.
13.
Composite of polyacrylamide-bentonite (PAA-B) was prepared by direct polymerization in a suspension of bentonite (B), the composite was then modified by phytic acid (PAA-B-Phy). The parameters related to adsorption of UO2 2+ in absence and presence of 0.01M CaCl2 and of natural radionuclides (Tl+, Pb2+, Ra2+ and Ac3+ in a leaching solution) onto PAA-B and PAA-B-Phy, and thermodynamics of the adsorption were investigated. Adsorption isotherms were of L and H types for the adsorption of UO2 2+ onto PAA-B and PAA-B-Phy, whilst for Tl+, Pb2+, Ra2+ and Ac3+ they were of C type for both adsorbents. Langmuir equilibrium constants for the adsorption of all studied ions onto PAA-B-Phy were significantly higher than those found for PAA-B. The thermodynamic parameters indicated that adsorption reactions are spontaneous in terms of adsorption free enthalpy. The composite of PAA-B and its modification by Phy have been used for the first time in this study. It is concluded that the composites can be practically used for adsorption and applied as adsorbent of radionuclides.  相似文献   

14.
稀土离子(La3+,Ce3+,Tb3+,Y3+)对炎症及血小板聚集的影响   总被引:1,自引:0,他引:1  
研究稀土离子(La3 ,Ce3 ,Tb3 ,Y3 )对炎症、血小板聚集及蛋白磷酸化的影响.采用二甲苯使小鼠耳部致炎,腹腔注射稀土离子,观察炎症的变化;利用血小板聚集仪观察稀土离子对血小板聚集的影响;用放射标记法测量稀土对血小板蛋白磷酸化程度的影响.结果表明,稀土离子在2.5×10-4mol·L-1·kg-1的注射剂量下,能显著加强炎症反应;1×10-3mol·L-1的轻稀土(La3 ,Ce3 )对由ADP诱导的血小板聚集有明显的抑制作用,而重稀土(Tb3 ,Y3 )有明显的促进作用;浓度在1×10-6~1×10-4mol·L-1时,轻、重稀土均可促进血小板蛋白磷酸化.稀土离子对炎症、血小板聚集及蛋白磷酸化的影响与稀土的种类和剂量有关.  相似文献   

15.
New LnxBi2–xSe3 (Ln: Sm3+, Eu3+, Gd3+, Tb3+) based nanomaterials were synthesized by a co‐reduction method. Powder XRD patterns indicate that the LnxBi2–xSe3 crystals (Ln = Sm3+, Eu3+, x = 0.00–0.44 and Ln = Gd3+, Tb3+, x = 0.00–0.50) are isostructural with Bi2Se3. The cell parameter c decreases for Ln = Eu3+, Gd3+, Tb3+ upon increasing the dopant content (x), while a slightly increases. Changes in lattice parameters could be related to the radii of cations. SEM images show that doping of the lanthanide ions in the lattice of Bi2Se3 generally results in nanoflowers. For the terbium compound two kinds of morphologies (nanoflowers and nanobelts) were observed. UV/Vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions. Emission spectra show intense transitions from the excited to the ground state of Ln3+ and energy transfer from the Bi2Se3 lattice. Emission spectra of europium‐doped materials, in addition to the characteristic red emission peaks of Eu3+, show an intense blue emission band centered at 432 nm, originating from the 4f65d1 to 4f7 configuration in Eu2+. EPR measurements confirm the existence of Eu2+ in the materials. Interestingly, for all samples starting at low Ln3+ concentration, the emission intensity rises to a maximum at a Ln3+ concentration of x = 0.2 and falls again steadily to a minimum at x = 0.45.  相似文献   

16.
Summary. In this paper, according to the molecular fragment principle, a series of twelve quaternary luminescent lanthanide complex molecular systems were assembled. Both elemental analysis and infrared spectroscopy allowed to determine the complexes formula: Ln(Nic)3(L)·H2O, where Ln=Sm, Eu, Tb, Dy; HNic=pyridine-3-carboxylic acid; L=N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), pyrrolidone (pyro). The photophysical properties of these functional molecular systems were studied by recording both ultraviolet-visible absorption, phosphorescence, fluorescence excitation, and emission spectra. It was found that the conjugated pyridine-3-carboxylic acid acts as the main energy donor and luminescence sensitizer due to the suitable energy match and effective energy transfer to the luminescent Ln 3+ ions. Amide molecules (DMF, DMA, pyro) were only used as assistant structural ligands to enhance the luminescence. Especially the europium complexes show the strongest luminescence due to the optimum energy transfer between the HNic triplet state energy level and Eu3+.  相似文献   

17.
Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.  相似文献   

18.
《印度化学会志》2023,100(8):101059
In recent years, the chelation between quercetin and transition metals has attracted much attention because the complexes formed have higher antioxidant and medicinal activities. However, the theoretical investigation of the mechanisms of flavonoid functioning along with the structures of quercetin–metal complexes is still not sufficiently studied. In this research work, quercetin–complexes with Na+, K+, Mg2+, Ca2+, and Al3+ are studied theoretically by using density functional theory (DFT) method in order to investigate the stability, reactivity, nature of interaction, and the application of the quercetin-metal complexes as potential antioxidants. From the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) results, the K-quercetin salt was observed to be more stable as compared to the other metals while Ca seemed to be the most reactive with the least values in the neutral form of the metal - quercetin interaction. The results of the antioxidant activity in the neutral state present Ca and Mg to have the higher values of ionization potential (IP) indicating that the antioxidant activity of Ca/Mg complexes with quercetin are less pronounced, while K-complex with the least value indicating the higher the electron donating reactivity. In comparison, it is worth to note that Mg-Q and Ca-Q in the deprotonated state of quercetin showcase lower IP, higher ability of H-atom transfer and electron transfer reactivity, therefore, better antioxidant candidates of the quercetin complexes than their other counterparts.  相似文献   

19.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

20.
Fang J  You H  Chen J  Lin J  Ma D 《Inorganic chemistry》2006,45(9):3701-3704
Memory effects in single-layer organic light-emitting devices based on Sm3+, Gd3+, and Eu3+ rare earth complexes were realized. The device structure was indium-tin-oxide (ITO)/3,4-poly(ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT)/Poly(N-vinyl carbazole) (PVK): rare earth complex/LiF/Ca/Ag. It was found experimentally that all the devices exhibited two distinctive bistable conductivity states in current-voltage characteristics by applying negative starting voltage, and more than 10(6) write-read-erase-reread cycles were achieved without degradation. Our results indicate that the rare earth organic complexes are promising materials for high-density, low-cost memory application besides the potential application as organic light-emitting materials in display devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号