首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

2.
The control of nanoparticle synthesis using thermal plasmas is difficult and often leads to problems of chemical and structural purity, and poor process robustness in terms of consistency of product from run to run. Good reactor design allowed to overcome these issues and to develop a new material based on graphene with a flake-like structure (labeled graphene nanoflakes, GNF) supporting nitrogen for catalytic applications, for example as platinum replacement in fuel cells. These structures showed not only to be active, but also stable in polymer electrolyte fuel cell operation. Characterization of these structures, in situ fuel cell studies and modeling analysis all indicate that achievement of stability relates on the crystalline two-dimensional graphene structure. This paper first reviews the basic aspects behind the structural objectives, describes the synthesis process design leading to this crystalline structure, and provides a two-dimensional analysis on the graphitic growth based on fundamental theory and CFD calculations. These calculations indicate that an independent control of the graphene structure thickness (number of atomic planes) and sheet lengths is possible in a thermal plasma reactor.  相似文献   

3.
Nanostructures derived from amphiphilic DNA–polymer conjugates have emerged prominently due to their rich self‐assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA–polymer nanostructures of various shapes by leveraging polymerization‐induced self‐assembly (PISA) for polymerization from single‐stranded DNA (ssDNA). A “grafting from” protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA–polymer conjugates and DNA–diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA–polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye‐labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA–polymer nanostructures.  相似文献   

4.
This Feature Article focuses on the rapidly emerging concept of the “triple click reactions” towards the design and synthesis of macromolecules with well‐defined topology and chemical composition, and also precise molecular weight and narrow molecular weight distribution. The term “triple click reaction” used in this feature article is based on the utilization of three chemically and mechanistically different click reactions for polymer–polymer conjugation and post‐modification of the polymers. Three sequential click reactions of which two are identical should not be considered to be triple click reactions. The triple click reaction strategy for polymer conjugation and post‐modification of polymers is classified in this article based on the resultant architectures: linear and non‐linear structures.  相似文献   

5.
Heteroatom‐doped carbon materials have been extensively investigated as metal‐free electrocatalysts to replace commercial Pt/C catalysts in oxygen reduction reactions in fuel cells and Li–air batteries. However, the synthesis of such materials usually involves high temperature or complicated equipment. Graphene‐based sulfur composites have been recently developed to prolong the cycling life of Li–S batteries, one of the most attractive energy‐storage devices. Given the high cost of graphene, there is significant demand to recycle and reuse graphene from Li–S batteries. Herein, we report a green and cost‐effective method to prepare sulfur‐doped graphene, achieved by the continuous charge/discharge cycling of graphene–sulfur composites in Li–S batteries. This material was used as a metal‐free electrocatalyst for the oxygen reduction reaction and shows better electrocatalytic activity than pristine graphene and better methanol tolerance durability than Pt/C.  相似文献   

6.
The direct methanol fuel cell (DMFC) is considered as a promising power source, because of its abundant fuel source, high energy density and environmental friendliness. Among DMFC anode materials, Pt and Pt group metals are considered to be the best electrocatalysts. The combination of Pt with some specific transition metal can reduce the cost and improve the tolerance toward CO poisoning of pure Pt catalysts. In this paper, the geometric stabilities of PtFe/PdFe atoms anchored in graphene sheet and catalytic CO oxidation properties were investigated using the density functional theory method. The results show that the Pt (Pd) and Fe atoms can replace C atoms in graphene sheet. The CO oxidation reaction by molecular O2 on PtFe–graphene and PdFe–graphene was studied. The results show that the Eley–Rideal (ER) mechanism is expected over the Langmuir–Hinshelwood mechanism for CO oxidation on both PtFe–graphene and PdFe–graphene. Further, complete CO oxidation on PtFe–graphene and PdFe–graphene proceeds via a two‐step ER reaction: CO(gas) + O2(ads) → CO2(ads) + O(ads) and CO(gas) + O(ads) → CO2(ads). Our results reveal that PtFe/PdFe commonly embedded in graphene can be used as a catalyst for CO oxidation. The microscopic mechanism of the CO oxidation reaction on the atomic catalysts was explored.  相似文献   

7.
The photochemical conversion of carbon dioxide provides a straightforward and effective strategy for the highly efficient production of solar fuels with high solar‐light utilization efficiency. However, the high recombination rate of photoexcited electron–hole (e‐h) pairs and the poor photostability have greatly limited their practical applications. Herein, a practical strategy is proposed to facilitate the separation of e‐h pairs and enhance the photostability in a semiconductor by the use of a Schottky junction in a bimetal‐graphene‐semiconductor stack array. Importantly, Au‐Cu nanoalloys (ca. 3 nm) supported on a 3D ultrathin graphene shell encapsulating a p‐type Cu2O coaxial nanowire array promotes the stable photochemical reduction of CO2 to methanol by the synergetic catalytic effect of interfacial modulation and charge‐transfer channel design. This work provides a promising lead for the development of practical catalysts for sustainable fuel synthesis.  相似文献   

8.
李婧宇  祁明雨  徐艺军 《催化学报》2022,43(4):1084-1091
光催化析氢技术被认为是解决化石能源紧缺和环境污染问题的有效途径之一.在传统的光解水体系中,析氧半反应因涉及到复杂的四电子转移和O=O双键形成,成为光催化水分解的决速步骤.光生空穴牺牲试剂的引入虽然可以在一定程度上提高体系的光催化效率,但同时造成了光生空穴氧化能力的浪费,且增加了系统成本.相比之下,构建由光催化析氢和选择性有机合成相结合的双功能反应平台,能够同时利用光生电子和空穴获得绿色的清洁燃料和高值化学品,为解决上述问题提供了一条理想途径.近年来,苯甲醇等生物质衍生物平台分子的光催化选择性氧化引起了人们的广泛关注.研究表明,ZnIn2S4可以实现从苯甲醇到C–C耦合产物的选择性光催化脱氢氧化.然而,由于光生载流子的快速复合,单独ZnIn2S4的光催化性能往往受到严重抑制.目前已有一些研究利用将ZnIn2S4与合适的助催化剂或与其能级位置匹配的半导体复合等方法构建异质结构,致力于提高光生载流子的分离和迁移能力.虽然氢气的产率以及苯甲醇的转化率在复合光催化剂上明显提高,但体系对液相产物的选择性却由原本的C–C耦合产物变为苯甲醛.因此,构建高效且对C–C耦合产物具有高选择性的苯甲醇氧化同时产氢的双功能光催化反应体系仍面临诸多挑战.本文采用一锅油浴法制备了过渡金属Ni掺杂的超薄ZnIn2S4纳米片(ZIS/Ni).该复合材料可以有效利用太阳能催化一系列芳香醇选择性脱氢偶联,同时获得清洁的氢气能源以及增值的C–C耦合产物.Ni的掺杂显著提高了ZnIn2S4纳米片的光催化性能,且当Ni掺杂摩尔比为1%时,复合材料具有最佳的催化活性.循环活性实验以及反应前后的晶相测试结果表明,二元复合材料具有良好的光催化稳定性.研究表明,ZIS/Ni纳米片光催化活性的显著提高主要归因于其优化的电子结构能够有效促进材料光捕获及光生载流子分离转移能力.另外,采用电子自旋共振光谱技术对反应过程中的自由基中间体进行原位监测发现,?CH(OH)Ph是光催化氧化还原过程中关键的自由基中间体.本研究有望为进一步优化探索新型高效的光催化氧化还原平台,以绿色可持续的方式,为同时获得清洁的太阳能燃料和高附加值的化学品提供启发.  相似文献   

9.
We report a strategic synthesis of poly(cyclosilane), a well‐defined polymer inspired by crystalline silicon. The synthetic strategy relies on the design of a functionalized cyclohexasilane monomer for transition‐metal‐promoted dehydrocoupling polymerization. Our approach takes advantage of the dual function of the phenylsilyl group, which serves a crucial role both in the synthesis of a novel α,ω‐oligosilanyl dianion and as a latent electrophile. We show that the cyclohexasilane monomer prefers a chair conformation. The monomer design ensures enhanced reactivity in transition‐metal‐promoted dehydrocoupling polymerization relative to secondary silanes, such as methylphenylsilane. Comprehensive NMR spectroscopy yields a detailed picture of the polymer end‐group structure and microstructure. Poly(cyclosilane) has red‐shifted optical absorbance relative to the monomer. We synthesize a σ–π hybrid donor–acceptor polymer by catalytic hydrosilylation.  相似文献   

10.
Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as‐synthesized Pd/PDDA–graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA–graphene catalyst showed improved electrocatalytic activity toward alcohol‐oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd‐based catalysts. This study demonstrates the great potential of PDDA‐functionalized graphene as a support for the development of metal–graphene nanocomposites for important applications in fuel cells.  相似文献   

11.
Herein, by using dispersion‐corrected density functional theory, we investigated the Diels–Alder chemistry of pristine and defective graphene. Three dienes were considered, namely 2,3‐dimethoxy‐1,3‐butadiene (DMBD), 9‐methylanthracene (9MA), and 9,10‐dimethylanthracene (910DMA). The dienophiles that were assayed were tetracyanoethylene (TCNE) and maleic anhydride (MA). When pristine graphene acted as the dienophile, we found that the cycloaddition products were 47–63 kcal mol?1 less stable than the reactants, thus making the reaction very difficult. The presence of Stone–Wales translocations, 585 double vacancies, or 555‐777 reconstructed double vacancies did not significantly improve the reactivity because the cycloaddition products were still located at higher energy than the reactants. However, for the addition of 910DMA to single vacancies, the product showed comparable stability to the separated reactants, whereas for unsaturated armchair edges the reaction was extremely favorable. With regards the reactions with dienophiles, for TCNE, the cycloaddition product was metastable. In the case of MA, we observed a reaction product that was less stable than the reactants by 50 kcal mol?1. For the reactions between graphene as a diene and the dienophiles, we found that the most‐promising defects were single vacancies and unsaturated armchair edges, because the other three defects were much‐less reactive. Thus, we conclude that the reactions with these above‐mentioned dienes may proceed on pristine or defective sheets with heating, despite being endergonic. The same statement also applies to the dienophile maleic anhydride. However, for TCNE, the reaction is only likely to occur onto single vacancies or unsaturated armchair edges. We conclude that the dienophile character of graphene is slightly stronger than its behavior as a diene.  相似文献   

12.
The synergistic effect between Pt and WC is beneficial for methanol electro‐oxidation, and makes Pt–WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small‐sized and contacting Pt–WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small‐sized, well‐dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre‐existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2–3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt–WC nanostructures. These results are consistent with the theoretical findings. X‐ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt–WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively.  相似文献   

13.
The design and synthesis of metal-free catalysts with superior electrocatalytic activity, high durability, low cost, and under mild conditions is extremely desirable but remains challenging. To address this problem, a polymer-assisted electrochemical exfoliation technique of graphite in the presence of an aqueous acidic medium is reported. This simple, cost-effective, and mass-scale production approach could open the possibility for the synthesis of high-quality nitrogen-doped graphene–polypyrrole (NG-PPy). The NG-PPy catalyst displays an improved half wave potential (E1/2=0.77 V) in alkaline medium compared with G-PPy (E1/2=0.66 V). Most importantly, this catalyst demonstrates excellent stability with high methanol tolerance, and it outperforms the commercial Pt/C catalyst and other previously reported metal-free catalysts. The content of graphitic nitrogen atoms is the key factor for the enhancement of electrocatalytic activity towards oxygen reduction reactions (ORR). Interestingly, the NG-PPy catalyst can be used as a cathode material in a zinc–air battery, which demonstrates a higher peak power density (59 mW cm−2) than G-PPy (36.6 mW cm−2), highlighting the importance of the low-cost material synthesis approach towards the development of metal-free efficient ORR catalysts for fuel cell and metal–air battery applications. Remarkably, the polymer-assisted electrophoretic exfoliation of graphite with a high yield (≈88 wt %) of few-layer graphene flakes could pave the way towards the mass production of high-quality graphene for a variety of applications.  相似文献   

14.
The morphology‐ and size‐controlled synthesis of branched Pt nanostructures on graphene is highly favorable for enhancing the electrocatalytic activity and stability of Pt. Herein, a facile approach is developed for the efficient synthesis of well‐dispersed Pt nanoflowers (PtNFs) on the surface of polydopamine (PDA)‐modified reduced graphene oxide (PDRGO), denoted as PtNFs/PDRGO, in high yield. The synthesis was performed by a simple heating treatment of an aqueous solution that contained K2PtCl4 and PDA‐modified graphene oxide (GO) without the need for any additional reducing agent, seed, surfactant, or organic solvent. The coated PDA serves not only as a reducing agent, but also as cross‐linker to anchor and stabilize PtNFs on the PDRGO support. The as‐prepared PtNFs/PDRGO hybrid, with spatially and locally separated PtNFs on PDRGO, exhibits superior electrocatalytic activity and stability toward both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in alkaline solutions.  相似文献   

15.
The surface ion-imprinting concept and chitosan incorporated sol-gel process were applied to the synthesis of a new attapulgitesupported polymer for selective separation of Ce(Ⅲ) from aqueous solution.The imprinting mechanism of prepared ion-imprinted polymer were discussed with the Characteristics of FT-IR and SEM.Results from the experiments of adsorption capacity and selectivity suggested that ion-imprinted polymer offered a fast kinetics for the adsorption of Ce(Ⅲ) under the optimum conditions. Its m...  相似文献   

16.
As a typical bioorthogonal reaction, the copper‐catalyzed azide–alkyne cycloaddition (CuAAC) has been used for drug design and synthesis. However, for localized drug synthesis, it is important to be able to determine where the CuAAC reaction occurs in living cells. In this study, we constructed a heterogeneous copper catalyst on a metal–organic framework that could preferentially accumulate in the mitochondria of living cells. Our system enabled the localized synthesis of drugs through a site‐specific CuAAC reaction in mitochondria with good biocompatibility. Importantly, the subcellular catalytic process for localized drug synthesis avoided the problems of the delivery and distribution of toxic molecules. In vivo tumor therapy experiments indicated that the localized synthesis of resveratrol‐derived drugs led to greater antitumor efficacy and minimized side effects usually associated with drug delivery and distribution.  相似文献   

17.
18.
Chemistry of 2‐oxazolines is involved in the polymer synthesis fields of cationic ring‐opening polymerization (CROP) and enzymatic ring‐opening polyaddition (EROPA), although both polymerizations look like a quite different class of reaction. The key for the polymerization to proceed is combination of the catalyst (initiator) and the design of monomers. This article describes recent developments in polymer synthesis via these two kinds of polymerizations to afford various functional polymers having completely different structures, poly(N‐acylethylenimine)s via CROP and 2‐amino‐2‐deoxy sugar unit‐containing oligo and polysaccharides via EROPA, respectively. From the viewpoint of reaction mode, an acid‐catalyzed ring‐opening polyaddition (ROPA) is considered to be a crossing where CROP and EROPA meet. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1251–1270, 2010  相似文献   

19.
A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn–air battery, in which graphene‐coated sponge serves as pressure‐sensitive air cathode that endows the whole system with the capability of self‐controlled energy release. The responsive batteries exhibit superior battery performance with high open‐circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm?2. This work presents an important move towards next‐generation intelligent energy storage devices with energy management function.  相似文献   

20.
Thermosensitive graphene‐polymer composites have been prepared by attaching poly(N‐isopropylacrylamide) (PNIPAAm) onto the basal plane of graphene sheets via π‐π stacking. Pyrene‐terminated PNIPAAm was synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization via a pyrene‐functional RAFT agent. Aqueous solutions of the graphene‐polymer composites were stable and thermosensitive. The lower critical solution temperature (LCST) of pyrene‐terminated PNIPAAm was measured to be 33 °C. When the pyrene‐functional polymer was attached to graphene the resultant composites were also thermosensitive in aqueous solutions exhibiting a reversible suspension behavior at 24 °C. Atomic force microscopy (AFM) analysis revealed that the thickness of a graphene‐PNIPAAm (Mn: 10,000 and PDI: 1.1) sheet was ~5.0 nm. The surface coverage of polymer chains on the graphene basal plane was calculated to be 7.2 × 10?11 mol cm?2. The graphene‐PNIPAAm composite material was successfully characterized using X‐ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR‐IR) spectroscopy, and thermogravimetric analysis (TGA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 425–433, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号