首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
A series of parent poly(aryl ether ketone)s bearing different content of unsaturated pendant propenyl groups were synthesized via nucleophilic substitution polymerization from 3,3′-diallyl-4,4′-dihydroxybiphenyl, 9,9′-bis(4-hydroxyphenyl) fluorene and 4,4′-difluorobenzophenone. The polymers with pendant aliphatic sulfonic acid groups were further synthesized by free radical thiol-ene coupling reactions between 3-mercapto-1-propanesulfonic sodium and the parent propenyl functional copolymers. The resulting sulfonated polymers with high inherent viscosity (1.83-4.69 dL/g) were soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solutions. The copolymers with different ion exchange capacity could be conveniently synthesized by varying the monomers ratios. Transmission electron microscopy (TEM) was used to examine the microstructures of the membrane and the results revealed that significant hydrophilic/hydrophobic microphase separation with spherical, uniform-sized (5-10 nm) and well-dispersed hydrophilic domains was afforded. The proton conductivities of the as-prepared membranes and the state-of-the-art Nafion 117 membrane in fully hydrated state were investigated. The results revealed that the proton conductivity of the synthesized membranes increased more remarkably than that of Nafion 117 membrane with increasing temperature. The membrane with 1.69 mequiv/g of IEC had a conductivity of 2.5 × 10−2 Scm−1 at 100 °C. The membranes also possessed excellent mechanical properties, good thermal, oxidative, hydrolytic and dimensional stabilities.  相似文献   

2.
New acid–base polymer blend membranes for direct methanol fuel cells (DMFC) have been designed using a very accessible commercial polymer, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The preparation begins with the sulfonation and bromination of PPO to sulfonated PPO (SPPO) and bromomethylated PPO (BrPPO), respectively. Blend membranes are formed by mixing n-propylamine(PrNH2)-neutralized SPPO and PrNH2-aminated BrPPO solutions in N-methyl-2-pyrrolidone (NMP), and casting the mixed solution on glass petri dishes followed by acidification with aqueous hydrochloric acid. The compatibility between the acid and base components of the blend is assured by using acidic and basic polymers deriving from the same parent polymer (PPO). Ionic crosslinking is established between the sulfonic groups of SPPO and the amine groups of aminated BrPPO. The ionic crosslinking strengthens the membrane dimensional stability by reducing water uptake and membrane swelling up to temperatures as high as 80 °C. The membranes fabricated as such display good resistance to methanol crossover amidst some, but acceptable loss of proton conductivity. The characteristic factor (i.e. the ratio of proton conductivity to methanol permeability) increases noticeably with the BrPPO content, with the sample containing 30 wt.% BrPPO showing a 16-fold improvement over Nafion 117. The mechanical properties and oxidative stability of the blend membranes also satisfy the requirements for fuel cell assembly and operation.  相似文献   

3.
A novel series of sulfonated block copolymers were successfully synthesized by the condensation of modified poly(ether ether ketone) (PEEK) and polybutadiene (PB), followed by the selective post-sulfonation of PB blocks using acetyl sulfate as the sulfonating reagent. The sulfonic acid groups were only attached onto PB segments due to the high reactivity of double bonds to sulfonating reagent. The degree of sulfonation was controlled by changing the feed ratio of sulfonating reagent to block copolymer. PEEK-b-sPB could be easily cast into flexible and transparent membranes. The obtained membranes exhibited good thermal stability and satisfied mechanical properties. Tensile test showed the incorporation of sulfonate groups into PB blocks resulted in an increase in tensile strength and a decrease in elongation at break. TEM images revealed the existence of ionic spherical domains with the average sizes of 50-100 nm. Some of these small domains further aggregated to form large hydrophilic regions. The proton conductivity values were measured in the range of 10−2 S/cm in water and increased with increasing IEC and temperature.  相似文献   

4.
A series of sulfonated block poly(ether ether ketone)s with different sulfonic acid group clusters were successfully synthesized by nucleophilic displacement condensation. Membranes were accordingly cast from their DMSO solutions, and fully characterized by determining the ion-exchange capacity, water uptake, proton conductivity, dimensional stabilities and mechanical properties. The experimental results showed that the main properties of the membrane can be tailored by changing the cluster size of sulfonic acid groups. The membrane of block-7c(40) has good mechanical, oxidative and dimensional stabilities together with high proton conductivity (5.09 × 10−2 S cm−1) at 80 °C under 100% relative humidity. The membranes also possess excellent thermal and dimensional stabilities. These polymers are potential and promising proton conducting membrane material for PEM full cell applications.  相似文献   

5.
A series of sulfonated copolyimides containing benzimidazole groups (SPIs) were synthesized by random copolymerization of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 2-(4-aminophenyl)-5-aminobenzimidazole (APABI), 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 9,9-bis(4-aminophenyl)fluorene (BAPF) in m-cresol in the presence of benzoic acid and triethylamine at 180 °C for 20 h. Membranes with good mechanical properties were prepared by solution cast method. Proton exchange treatment resulted in ionic cross-linking and the membranes were further covalently cross-linked by treating them in polyphosphoric acid (PPA) at 180 °C for 6 h. The covalently cross-linked membranes displayed slightly lower ion exchange capacities (IECs) and proton conductivities than the corresponding covalently uncross-linked ones because small part of the sulfonic acid groups had been consumed during the cross-linking process. Fenton’s test (3% H2O2 + 3 ppm FeSO4, 80 °C) revealed that benzimidazole groups played an important role in the radical oxidative stability of the membranes, while the cooperative effect of benzimidazole groups and covalent cross-linking led to much more significant enhancements in the radical oxidative stability of the membranes than each alone. The membrane 4 (ODADS/APABI/BAPF = 2/1/1, by mol), for example, after covalent cross-linking could maintain membrane form within 8 h measurement, which was much longer than that (3 h) before covalent cross-linking under the same conditions. The membrane 5 (ODADS/BAPF = 3/1, by mol) without benzimidazole groups, however, after covalent cross-linking started to break into pieces after 85 min measurement, which was only slightly longer than that (60 min) before cross-linking under the same conditions.  相似文献   

6.
We investigated thermal properties of proton exchange membranes (PEMs) prepared by the radiation-induced grafting of styrene into crosslinked-polytetrafluoroethylene films and the subsequent sulfonation for fuel-cell applications. A conventional thermogravimetric analysis was found to be unreliable because the resulting curve varied greatly with the heating rate. Thus, in order to obtain accurate information, we performed an ex-situ heat-treatment analysis, which involved heating of the PEMs at fixed temperatures of 200-350 °C and measurement of their remaining weight, ion exchange capacity (IEC) and proton conductivity (σ) after washing in pure water. The IEC and σ did not change at any temperature up to 200 °C, indicating high thermal stability. At 250 °C, however, the PEM properties deteriorated probably via radical cleavage of the C-S bond between a sulfonic acid group and an aromatic ring, and condensation of two sulfonic acid groups. Finally, the PEM was hot-pressed with two electrodes at 200 °C to produce a good membrane-electrode assembly for a fuel cell.  相似文献   

7.
Porous poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) membranes were prepared by solvent–nonsolvent evaporation technique. Morphology and porosity of the membranes were varied with different nonsolvents and had an effect on electrochemical properties. The porous membranes were functionalized with different liquid electrolyte solutions such as p-toluene sulfonic acid/phosphoric acid/sulfuric acid. Maximum electrolyte uptake and minimal electrolyte leakage were tailored by the optimized porosity of the membranes. Thermal behavior obtained in this study ensures the complete evaporation of nonsolvents and ensures its thermal stability. The pTSA-activated PVdF-HFP/THF membrane exhibited high ionic conductivity of about 27.27 mS/cm and a lower methanol permeability in the range of 9.7 × 10−8 cm2/s. High compatibility between pTSA solution and porous PVdF-HFP polymer electrolyte membrane enhances its electro chemical behavior than that of conventional liquid electrolytes.  相似文献   

8.
The concentration of sulfuric acid by pervaporation has been studied using Nafion-112® and Nafion-117® membranes, which have been characterized in terms of flux, permeability, and separation factor at 100 and 120 °C. Feed acid concentrations investigated ranged from 40 to over 80 wt%. In general, water fluxes ranged from 100 to 8000 g/m2 h, depending on feed acid concentration and separation factors as high as 104 were observed. Membrane stability was probed using dynamic mechanical analysis that revealed an increase in the temperature at which the α transition is observed, which corresponds to the glass transition (Tg) of the hydrophilic domain, upon use, suggesting embrittlement of the polymer structure. Further studies showed that the embrittlement was due to an interaction with the acid and was not induced by the operating temperature.  相似文献   

9.
Poly(phenylene oxide) (PPO) was sulfonated to different ion exchange capacities (IECs) using chlorosulfonic acid as the sulfonating agent. Tough, ductile films were successfully cast from sulfonated PPO (SPPO) solutions in N‐methyl‐2‐pyrrolidone or N,N‐dimethylformamide. The obtained membranes had good thermal stability revealed by thermogravimetric analysis (TGA). Compared with an unsulfonated PPO membrane, the hydrophilicity and water uptake of the SPPO membranes were enhanced, as shown by reduced contact angles with water. The tensile test indicated that the SPPO membranes with IEC ranging from 0.77 to 2.63 meq/g were tough and strong at ambient conditions and still maintained adequate mechanical strength after immersion in water at room temperature for 24 hr. The results of wide‐angle X‐ray diffraction (WAXD) showed amorphous structures for PPO and SPPO while the peak intensity decreased after sulfonation. The proton conductivity of these SPPO membranes was measured as 1.16 × 10?2 S/cm at ambient temperature, which is comparable to that of Nafion 112 at similar conditions and in the range needed for high‐performance fuel cell proton exchange membranes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Polybenzimidazole (PBI)/imidazole (Im) hybrid membranes were prepared from an organosoluble, fluorine-containing PBI with Im. The thermal decomposition of the PBI/Im hybrid membranes occurred at about 160 °C. The conductivities of the acid doped PBI/Im hybrid membranes increased with both the temperature and the Im content. The conductivity of acid doped PBI-40Im (molar ratio of Im/PBI = 40) reached 3.1 × 10−3 (S/cm) at 160 °C. The proton conductivities of PBI/Im hybrid membranes were over 2 × 10−3 (S/cm) at 90 °C and 90% relative humidity. The addition of Im could reduce the mechanical properties and methanol barrier ability of the PBI membranes.  相似文献   

11.
Curing reaction of the as-spun fiber derived from melt-spinning of a novolac resin in a solution of formaldehyde and hydrochloric acid was carried out under microwave irradiation by controlling the reaction time. IR spectroscopy, scanning electron microscopy, and dynamic mechanical analysis were employed to characterize the change of structure and mechanical performance of these phenolic fibers. At the heating rate of 1.2 °C min−1 or in a period of 86 min the homogeneous highly crosslinked phenolic fiber was obtained with the maximum tensile strength being similar with that of the fiber cured under conventional heating reflux (8 h), suggesting that microwave irradiation promotes not only the diffusion of +CH2OH from the skin into the inner layer of the fiber but also the reaction of +CH2OH with the phenolic ring in a suitable extent. During pyrolysis the increase of crosslinking degree in the phenolic fibers diminishes the formation of low molecular weight compounds and promotes the formation of graphite layers.  相似文献   

12.
Proton conductive inorganic–organic hybrid membranes were synthesized from 3-glycidyloxypropyltrimethoxysiane (GPTMS), phenyltriethoxysilane (PhTES) and hydroxyalkylphosphonic acid. Two kinds of hydroxyalkylphosphonic acids, 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) and hydroxyethanephosphonic acid (HEPA), were incorporated into the membranes as functional molecules for proton conduction. FT-IR and Raman studies revealed the presence of phosphonic acid groups in the hybrid membranes. 13C and 29Si NMR confirmed that a three-dimensional siloxane network was formed in the prepared hybrid membrane by hydrolysis and condensation reactions. DTA-TG analysis showed that these membranes were thermally stable up to 200 °C. The HEDPA-based system was found to have higher proton conductivities than the HEPA-based one. The proton conductivities of the hybrid membranes increased with the phosphonic acid content and temperature up to 130 °C. The conductivities of the HEDPA/GPTMS/PhTES membranes = 1/1.6/0.4 were 1.0 × 10−1 and 4.5 × 10−4 S cm−1 at 100% relative humidity and non-humidified conditions, respectively, at 130 °C.  相似文献   

13.
This investigation was performed to find if the nanometer SiO2 added in the membranes can improve the pervaperation performance of the membranes. Acrylic acid (AA) and acrylonitrile (AN) were synthesized by solution polymerization with and without nanometer SiO2. The copolymer solution was made into main body of the membranes, then composited with the polyvinyl alcohol (PVA) acetal membranes, to make the three-layer sandwich composite pervaporation membranes. The structure and the performance of the membranes were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG), dynamic themomechanical analysis apparatus (DMA) and mechanical property testing. Pervaporation experiments were carried out using these membranes to separate the mixtures of methanol/water over the complete concentration range 70–98%, and results showed that the selectivity of the membranes with nanometer SiO2 had notable improvement. For the 98% mixture at 60 °C, the separate factor is up to 1458, which is improved more than 10 times compared to the membranes without nanometer SiO2, the permeate flux is up to 325 g/(m2 h). For the 70% mixture at 70 °C, the separate factor arrived at 12, the permeate flux is up to 7097 g/(m2 h), which is improved more than 14 times compared to membranes without nanometer SiO2. It was concluded that the pervaperation performance of the membranes can improve greatly by nanometer SiO2.  相似文献   

14.
For polymer electrolyte membrane fuel membrane cell (PEMFC) applications, the effect of electron-withdrawing groups on the properties of sulfonated poly(arylene ether) (SPE) ionomer membranes was investigated. A series of poly(arylene ether)s containing fluorenyl groups and electron-withdrawing groups (sulfone, nitrile, or fluorine) was synthesized, which were sulfonated with chlorosulfonic acid using a flow reactor to obtain the title ionomers. The ionomers had high molecular weight (M> 77 kDa, Mw > 238 kDa) and gave tough, ductile membranes by solution casting. The ion exchange capacity (IEC) of the membranes ranged from 1.6 to 3.5 mequiv/g as determined by titration. The electron-withdrawing groups did not appear to affect the thermal properties (decomposition temperature higher than 200 °C). The presence of nitrile groups, especially at positions meta to the ether linkages, improved the oxidative stability of the SPE membranes, while it led to a deterioration of the hydrolytic stability. The perfluorinated biphenylene groups were effective in providing high mechanical strength with reasonable dimensional change, probably due to a somewhat decreased water absorbability. The SPE membrane containing sulfone groups showed the highest proton conductivity (10−3-10−1 S/cm) at 20-93% RH (relative humidity) and 80 °C. The nitrile-containing SPE membrane showed smaller apparent activation energies for oxygen and hydrogen permeability and is thus considered to be a possible candidate for applications in PEMFCs.  相似文献   

15.
An investigation on the effect of sulfonic group on solubility parameters and solubility behavior of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) is presented. Sulfonated PPO (SPPO) was prepared using chlorosulfonic acid as a sulfonating agent. The structure of SPPO was confirmed by FT‐IR, and the ion exchange capacity (IEC) of SPPO was accurately determined by conductometric titration and 1H‐NMR. The three‐dimensional solubility parameters of SPPO defined by Hansen were estimated by group contribution, and this approach was used to obtain the three coordinates of a solubility parameter in terms of: a dispersion part δd, a polar part δp and a hydrogen bonding part δh. The theoretical predications of solubility behavior were characterized using “soluble sphere” in three‐dimensional space. The estimated results were in accordance with the solubility experiments in different solvents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Conductive polymers have found extensive application in fuel cells, sensors and more recently as scaffolds for tissue and organ regeneration. Scaffolds that can transmit electrical impulses have been shown to be beneficial in regeneration of tissues like muscle and nerve that are electroactive in nature. Most cellular events and cell functions are regulated by ion movement, and their imbalance is the cause of several diseases. We report synthesis and characterization of sulfonated polymers of poly(methyl vinyl ether‐alt‐maleic anhydride) (PMVEMA), poly(ether ether ketone) (PEEK), poly(ether sulfone) (PES) and poly(phenylene oxide) (PPO) and evaluate their potential for tissue regeneration. The ionic conductive property stems from the presence of sulfonic groups on the polymer backbone. The structure of the polymer was confirmed using Fourier Transform Infrared Spectroscopy and membrane hydrophicity was determined by water contact angle measurement. The electrical conductivity of these sulfonated membranes was found to be 53.55, 35.39 and 29.51 mS/cm for SPPO, SPEEK and SPMVEMA, respectively. The conductivity was directly proportional to the sulfonic acid content on the polymer backbone. The ionic membranes namely SPPO, SPEEK and SPMVEMA demonstrated superior cell adhesion properties (~7–10 fold higher) than cells seeded onto tissue culture polystyrene. The sulfonated membranes exhibited static water contact angle in the range of 70–76°. The membranes supported the proliferation of human skin fibroblasts over 14 days in culture as evidenced by confocal and electron microscopy imaging. The ionic materials reported in this study may serve as scaffolds for a variety of tissue healing and drug delivery applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (∼20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.  相似文献   

18.
Novel nanocomposite membranes were prepared with sulfonated polyoxadiazole and different amounts of sulfonated dense and mesoporous (MCM-41) silica particles. It has been shown that particle size and functionality of sulfonated silica particles play an important role when they are used as fillers for the development of polymer electrolyte nanocomposite membrane for fuel cells. No significant particle agglomerates were observed in all nanocomposite membranes prepared with sulfonated dense silica particles, as analyzed by SEM, AFM, TGA, DMTA and tensile tests. The Tg values of the composite membranes increased with addition of sulfonated silica, indicating an interaction between the sulfonic acid groups of the silica and the polyoxadiazole. Constrained polymer chains in the vicinity of the inorganic particles were confirmed by the reduction of the relative peak height of tan δ. A proton conductivity of 0.034 S cm−1 at 120 °C and 25% RH, which is around two-fold higher than the value of the pristine polymer membrane was obtained.  相似文献   

19.
HRM (hydrophilic reactive microgels) hydrogels based on acrylamide and 2-acrylamido-2-methylpropane sulfonic acid were prepared using HRM as a new crosslinking agent. HRM containing double bonds (C=C) were obtained by chemically modifying hydrophilic microgels (HM) of acrylamide with 2-acrylamido-2-methylpropane sulfonic acid. The resulting HRM hydrogels had high compression strength, elasticity, and elongation under high water content. The excellent mechanical performance is a main result of the unique microstructure of the hydrogels that are crosslinked by HRM instead of the conventional crosslinking agents such as N,N′–methylenebisacrylamide.  相似文献   

20.
Electrostatic multilayers of chitosan (CHI)/sodium alginate (SA) and CHI/poly(styrene sulfonate) sodium salt (PSS) were alternatively coated on electrospun cellulose acetate (CA) fiber mat. Morphologies of the composite membranes were characterized by scanning electron microscopy. The morphology of the CHI/SA-coated membrane was denser than the CHI/PSS-coated one. The top layers consisted of carboxyl and sulfonic functional groups for SA and PSS layers, respectively. Amino groups of CHI were only presented in slight quantity. X-ray photoelectron spectroscopy (XPS) confirmed the deposition of the amino groups of CHI on the multilayer membrane surface. These composite membranes were characterized for its water permeability where the water flux decreased with an increase in the number of the bilayers. The water flux was in the range of 60 and 40 L m−2 h−1 for 15 and 25 bilayered membranes, respectively. The sodium chloride (NaCl) solution flux was lower than the pure water flux due to the effect of osmotic pressure, and it decreased with an increase in the NaCl concentration. The rejection of NaCl increased substantially with the number of the bilayers of the polyelectrolytes multilayers. The level of NaCl rejection from this work was in the range of 6% and 15% for 15 and 25 bilayered membranes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号