首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four derivatives of 2,6‐bis­(hydroxy­methyl)­phenol, with various para substituents, have been investigated; these are 2,6‐bis­(hydroxy­methyl)‐4‐methyl­phenol, C9H12O3, (I), 2,6‐bis­(hydroxy­methyl)‐4‐methoxy­phenol, C9H12O4, (II), 2,6‐bis­(hydroxy­methyl)‐4‐phenoxy­phenol, C14H14O4, (III), and 2,6‐bis­(hydroxy­methyl)‐4‐[1‐(4‐methoxy­phenyl)‐1‐methyl­ethyl]­phenol, C18H22O4, (IV). All four structures display hydrogen‐bonding networks resulting in sheets, with possible weak inter‐sheet π–π interactions in one case. In all the structures but one, the mol­ecules form centrosymmetric dimeric subunits held together by two hydrogen bonds between the hydroxy­methyl groups and, in two cases, by probable π–π interactions.  相似文献   

2.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

3.
The mol­ecules of N,N′‐bis­(2‐pyridylmeth­yl)ferrocene‐1,1′‐diyl­dicarboxamide, [Fe(C12H11N2O)2], contain intra­molecular N—H⋯N hydrogen bonds and are linked into sheets by three independent C—H⋯O hydrogen bonds. The mol­ecules of the isomeric compound N,N′‐bis­(3‐pyridylmeth­yl)ferrocene‐1,1′‐diyldicarboxamide lie across inversion centres, and the mol­ecules are linked into sheets by a combination of N—H⋯N hydrogen bonds and π–π stacking inter­actions between pyridyl groups.  相似文献   

4.
The title compound, {[Zn(C8H4O5)(C3H7NO)2]·0.5C7H8}n, is a one‐dimensional coordination polymer in which the Zn atoms are linked by bridging 5‐hydroxy­benzene‐1,3‐dicarboxyl­ate ligands. These polymeric chains form two‐dimensional sheets via interchain hydrogen bonds, and these sheets, in turn, are stacked tightly with solvent toluene mol­ecules in the inter­layer space. The N,N′‐dimethyl­formamide ligands, coordinated axially to the Zn atoms, form van der Waals contacts with ligands in neighboring sheets, and enclose the guest mol­ecules.  相似文献   

5.
The title compound, [Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2, is a two‐component host–guest material. The 2,2′‐di­thio­bis(pyridine N‐oxide) molecule has crystallographic twofold symmetry. The metal complex lies on an inversion centre and associates via C—H?S interactions into chains which thread the 2,2′‐di­thio­bis­(pyridine N‐oxide) lattice in perpendicular directions. Hydro­gen bonds exist between the water mol­ecules of the di­aqua­magnesium units and the N—O groups of the host lattice.  相似文献   

6.
In the title compound, {[Zn(C10H8N2)(H2O)4](C6H5O4S)2·3H2O}n, the Zn atom, the bipyridine ligand and one of water mol­ecules are located on twofold rotation axes. The Zn atom is coordinated by four O atoms from four water mol­ecules and two N atoms from two 4,4′‐bipyridine mol­ecules in a distorted octa­hedral geometry. The Zn2+ ions are linked by the 4,4′‐bipyridine mol­ecules to form a one‐dimensional straight chain propagating along the c axis. The 4‐hydroxy­benzene­sulfonate counter‐ions are bridged by the solvent water mol­ecules through hydrogen bonds to generate a two‐dimensional layer featuring large pores. In the crystal packing, the intra­layer pores form one‐dimensional channels along the c axis, in which the one‐dimensional [Zn(C10H8N2)(H2O)4]2+ chains are encapsulated. Electrostatic inter­actions between cations and anions and extensive hydrogen bonds result in a three‐dimensional supra­molecular structure.  相似文献   

7.
In the adduct 1,2‐bis(4‐pyridyl)­ethane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C12H12N2·2C20H18O3, the bipyridyl component lies across an inversion centre in P. The tris‐phenol mol­ecules [systematic name: 4,4′,4′′‐(ethane‐1,1,1‐triyl)­triphenol] are linked by O—H?O hydrogen bonds to form sheets built from R(38) rings, and symmetry‐related pairs of sheets are linked by the bipyridyl mol­ecules via O—H?N hydrogen bonds to form open bilayers. Each bilayer is interwoven with two adjacent bilayers, forming a continuous three‐dimensional structure. In the adduct 1,2‐bis(4‐pyridyl)­ethene–1,1,1‐tris(4‐hydroxy­phenyl)­ethane–methanol (1/1/1), C12H10N2·C20H18O3·CH4O, the mol­ecules are linked by O—H?O and O—H?N hydrogen bonds into three interwoven three‐dimensional frameworks, generated by single spiral chains along [010] and [001] and a triple‐helical spiral along [100].  相似文献   

8.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

9.
Two of the title compounds, namely (E)‐1,2‐bis­(1‐methyl­benzimidazol‐2‐yl)ethene, C18H16N4, (Ib), and (E)‐1,2‐bis­(1‐ethyl­benzimidazol‐2‐yl)ethene, C20H20N4, (Ic), consist of centrosymmetric trans‐bis­(1‐alkyl­benzimidazol‐2‐yl)ethene mol­ecules, while 3‐eth­yl‐2‐[(E)‐2‐(1‐ethyl­benzimidazol‐2‐yl)­ethen­yl]benzimidazol‐1‐ium perchlorate, C20H21N4+·ClO4, (II), contains the monoprotonated analogue of compound (Ic). In the three structures, the benzimidazole and benzimidazolium moieties are essentially planar; the geometric parameters for the ethene linkages and their bonds to the aromatic groups are consistent with double and single bonds, respectively, implying little, if any, conjugation of the central C=C bonds with the nitro­gen‐containing rings. The C—N bond lengths in the N=C—N part of the benzimidazole groups differ and are consistent with localized imine C=N and amine C—N linkages in (Ib) and (Ic); in contrast, the corresponding distances in the benzimidazolium cation are equal in (II), consistent with electron delocalization resulting from protonation of the amine N atom. Crystals of (Ib) and (Ic) contain columns of parallel mol­ecules, which are linked by edge‐over‐edge C—H⋯π overlap. The columns are linked to one another by C—H⋯π inter­actions and, in the case of (Ib), C—H⋯N hydrogen bonds. Crystals of (II) contain layers of monocations linked by π–π inter­actions and separated by both perchlorate anions and the protruding eth­yl groups; the cations and anions are linked by N—H⋯O hydrogen bonds.  相似文献   

10.
Each of the three title compounds, namely 6,6′‐methyl­ene­bis­(2‐methyl‐4H‐3,1‐benz­oxazin‐4‐one), C19H14N2O4, 6,6′‐methyl­ene­bis­(2‐tri­fluoro­methyl‐4H‐3,1‐benz­oxazin‐4‐one), C19H8F3N2O4, and 6,6′‐bi­(2‐tri­fluoro­methyl‐4H‐3,1‐benz­oxazin‐4‐one), C18H6F6N2O4, contains two planar benz­ox­azin­one fragments. In the first two compounds, these planes are virtually perpendicular to each other, while the third compound is planar overall. The electronic effects of the substituent groups on the oxazine moiety result in distortion of the bond angles at the C atoms of the C=O and C=N bonds, and in redistribution of electronic density in the oxazine rings. The latter leads to different bond lengths within this ring in the three mol­ecules. All the mol­ecules form stacks in their crystals with distances of 3.2–3.6 Å between adjacent mol­ecules in a stack.  相似文献   

11.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

12.
In the neutral title complex, trans‐bis(2,2′‐imino­di­ethanol‐N,O)­bis­(iso­thio­cyanato)­nickel(II), [Ni(NCS)2(C4H11NO2)2], the iso­thio­cyanate ions and the di­ethanol­amine mol­ecules act as mono­dentate and bi­dentate ligands, respectively. The NiII ion exhibits a distorted octahedral configuration with crystallographically imposed inversion symmetry and NNCS—Ni—Namine and NNCS—Ni—Oamine bond angles of 88.78 (10) and 89.44 (10)°, respectively. The Ni—N bond distances are in the range 2.069 (3)–2.096 (2) Å. The mol­ecules are linked by hydrogen bonds to form a three‐dimensional infinite lattice.  相似文献   

13.
Syntheses and X‐ray structural investigations have been carried out for (E)‐(4‐hydroxy­phenyl)(4‐nitro­phenyl)­diazene, C12H9N3O3, (Ia), (E)‐(4‐methoxy­phenyl)(4‐nitro­phenyl)­diazene, C13H11N3O3, (IIIa), and (E)‐[4‐(6‐bromo­hexyl­oxy)­phenyl](4‐cyano­phenyl)­diazene, C19H20BrN3O, (IIIc). In all of these compounds, the mol­ecules are almost planar and the azo­benzene core has a trans geometry. Compound (Ia) contains four and compound (IIIc) contains two independent mol­ecules in the asymmetric unit, both in space group P (No. 2). In compound (Ia), the independent mol­ecules are almost identical, whereas in crystal (IIIc), the two independent mol­ecules differ significantly due to different conformations of the alkyl tails. In the crystals of (Ia) and (IIIa), the mol­ecules are arranged in almost planar sheets. In the crystal of (IIIc), the mol­ecules are packed with a marked separation of the azo­benzene cores and alkyl tails, which is common for the solid crystalline precursors of mesogens.  相似文献   

14.
The crystal structure of the title compound, [Ni(NCS)2(C4H12N2O)2], has two crystallographically independent half‐mol­ecules in the asymmetric unit, with each Ni atom residing on a centre of symmetry. The two mol­ecules exhibit similar coordination geometry but display differences with regard to other structural features. Each NiII centre is octahedrally coordinated by two mutually trans chelating hydroxy­ethyl­ethyl­ene­di­amine ligands and two mutually trans iso­thio­cyanate ions. The two independent mol­ecules form chains through different types of non‐covalent interactions. In the case of one of the mol­ecules, only NCS and free OH groups participate in hydrogen bonding, while in the chain based on the second mol­ecule, the NCS, NH, NH2 and free OH groups are involved in intermolecular hydrogen bonding. The two chains interact with one another through hydrogen bonding, forming planar sheets. The third packing direction is mediated only by van der Waals interactions.  相似文献   

15.
The title compounds, bis­(pyridine‐2,6‐di­carboxyl­ato‐N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine‐2,6‐dicarboxylato‐N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl‐N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H?O intermolecular hydrogen bonds between the complex and the water mol­ecules.  相似文献   

16.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

17.
The X‐ray structure of 1,2,4,5‐tetra­hydroxy­benzene (benzene‐1,2,4,5‐tetrol) monohydrate, C6H6O4·H2O, (I), reveals columns of 1,2,4,5‐tetra­hydroxy­benzene parallel to the b axis that are separated by 3.364 (12) and 3.453 (11) Å. Molecules in adjacent columns are tilted relative to each other by 27.78 (8)°. Water mol­ecules fill the channels between the columns and are involved in hydrogen‐bonding interactions with the 1,2,4,5‐tetra­hydroxy­benzene mol­ecules. The crystal structure of the adduct 1,2,4,5‐tetra­hydroxy­benzene–2,5‐di­hydroxy‐1,4‐benzo­quinone (1/1), C6H6O4·C6H4O4, (II), reveals alternating mol­ecules of 1,2,4,5‐tetra­hydroxy­benzene and 2,5‐di­hydroxy‐1,4‐benzo­quinone (both lying on inversion centers), and a zigzag hydrogen‐bonded network connecting mol­ecules in three dimensions. For compound (II), the conventional X‐ray determination, (IIa), is in very good agreement with the synchrotron X‐ray determination, (IIb). When differences in data collection temperatures are taken into account, even the displacement parameters are in very good agreement.  相似文献   

18.
The orthorhombic form of 2‐hydroxy­cyclo­pent‐2‐enone, C5H6O2, consists of chains of hydrogen‐bonded mol­ecules aligned along a twofold screw axis. The monoclinic form contains two independent mol­ecules, which have different orientations of the hydroxyl proton, and which assemble into ribbons along a twofold screw axis.  相似文献   

19.
L4, or 3‐[2,6‐bis­(diethyl­carbamoyl)­pyridin‐4‐yl]‐N‐(tert‐but­oxy­car­bonyl)­alanine methyl ester, C24H38N4O6, crystallizes in neat [010] laths stabilized by abundant intra‐ and intermolecular hydrogen bonds. The strongest of these form [010] chains of mol­ecules, thus rationalizing the fastest growth direction, while the slowest direction coincides with the normal to the (110) layers, which are linked by very weak hydrogen bonds. There exist two independent mol­ecules, the distances and bond angles of which differ in a random manner only. The torsion and dihedral angles, however, differ so as to achieve optimal packing. The influence of the chiral group in the 4‐position of the pyridine ring on the helical wrapping and on the ensuing diastereomeric induction is briefly discussed.  相似文献   

20.
The title compounds, bis­(ammonium) naphthalene‐1,5‐di­sul­fon­ate, 2NH4+·C10H6O6S22−, and bis­[1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane] 1,5‐naphthalene­di­sul­fon­ate, 2C7H15N4O+·C10H6O6S22−, were prepared from the acid‐promoted reaction of hexa­methyl­enetetr­amine. In both structures, the di­sulfonate anion is positioned on an inversion center, with each sulfonate group contributing to the supramolecular assemblies via hydrogen bonds. The ammonium cations are linked to sulfonate groups by four distinct N+—H⃛O—S contacts [N⃛O = 2.846 (2)–2.898 (2) Å and N—H⃛O = 160 (2)–175 (2)°], whereas the 1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane cations form one O—H⃛O—S [O⃛O = 2.628 (2) Å and O—H⃛O = 176°] and three C—H⃛O—S [C⃛O = 3.359 (2)–3.380 (2) Å and C—H⃛O = 148–155°] interactions to neighboring sulfonate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号