首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Details of the direct synthesis of cationic Ru(II)(η5‐Cp)(η6‐arene) complexes from ruthenocene using microwave heating are reported. Developed for the important catalyst precursor [Ru(II)(η5‐Cp)(η6‐1‐4,4a,8a‐naphthalene)][PF6] reaction time could be shortened from three days to 15 min. The method was extended to [Ru(II)(η6‐benzene)(η5‐Cp)][PF6], [Ru(II)(η5‐Cp)(η6‐toluene)][PF6], [Ru(II)(η5‐Cp)(η6‐mesitylene)][PF6], [Ru(II)(η5‐Cp)(η6‐hexamethylbenzene)][PF6], [Ru(II)(η5Cp)(η6‐indane)][PF6], [Ru(II)(η5‐Cp)(η6‐2,6‐dimethylnaphthalene)][PF6], and [Ru(II)(η5‐Cp)(η6‐pyrene)][PF6]. 1‐methylnaphthalene and 2,3‐dimethylnaphthalene afforded mixtures of regioisomeric complexes. [Ru(Cp)(CH3CN)3][PF6], derived from the naphthalene precursor provided access to the cationic RuCp complexes of naphthoquinone, tetralindione, 1,4‐dihydroxynaphthalene, and 1,4‐dimethoxynaphthalene. Reduction of the tetralindione complex afforded selectively the endo,endo diol derivative. X‐Ray structures of five complexes are reported.  相似文献   

2.
The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2′:6′,2′′-terpyridine) has been investigated. 1H NMR kinetic experiments of the dissociation of the chloro ligand in D2O for the complexes [Ru(tpy)(bpy)Cl]Cl ( 1 , bpy=2,2’-bipyridine) and [Ru(tpy)(dppz)Cl]Cl ( 2 , dppz=dipyrido[3,2-a:2′,3′-c]phenazine) as well as the binuclear complex [Ru(bpy)2(tpphz)Ru(tpy)Cl]Cl3 ( 3 b , tpphz=tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1 – 5 ( 4 =[Ru(tbbpy)2(tpphz)Ru(tpy)Cl](PF6)3, 5 =[Ru(bpy)2(tpphz)Ru(tpy)(C3H8OS)/(H2O)](PF6)3, tbbpy=4,4′-di-tert-butyl-2,2′-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1 > 2 > 5 ≥ 3 > 4 . This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3 . Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.  相似文献   

3.
2,2′-Dipyridylamine (dpa) derivatives carrying a thiol-targeted maleimide group located at the end of an alkyl substituent on the central amine were synthesized. Reaction with the organometallic precursors [(η6-arene)RuCl2]2 (arene = benzene or p-cymene) yielded the half-sandwich cationic complexes [(η6-arene)Ru(dpa)Cl]+ where the dipyridylamine derivatives were coordinated as bidentate N,N donor ligands. Enzymatic studies showed that these derivatives were able to inactivate the cysteine endoproteinase papain by S-alkylation of the cysteine active site.  相似文献   

4.
New series of half-sandwich ruthenium(II) complexes supported by a group of bidentate pyridylpyrazole and pyridylimidazole ligands [(η6-C6H6)Ru(L2)Cl][PF6] (1), [(η6-C6H6)Ru(HL3)Cl][PF6] (2), [(η6-C6H6)Ru(L4)Cl][PF6] (3), and [(η6-C6H6)Ru(HL5)Cl][PF6] (4) [L2, 2-[3-(4-chlorophenyl)pyrazol-1-ylmethyl]pyridine; HL3, 3-(2-pyridyl)pyrazole; L4, 1-benzyl-[3-(2′-pyridyl)]pyrazole; HL5, 2-(1-imidazol-2-yl)pyridine] are reported. The molecular structures of 1-4 both in the solid state by X-ray crystallography and in solution using 1H NMR spectroscopy have been elucidated. Further, the crystal packing in the complexes is stabilized by C-H?X (X = Cl and π), N-H?Cl, and π-π interactions.  相似文献   

5.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

6.
Cationic [Ru(η5-C5H5)(CH3CN)3]+ complex, tris(acetonitrile)(cyclopentadienyl)ruthenium(II), gives rise to a very rich organometallic chemistry. Combined with diimine ligands, and 1,10-phenanthroline in particular, this system efficiently catalyzes diazo decomposition processes to generate metal-carbenes which undergo a series of original transformations in the presence of Lewis basic substrates. Herein, syntheses and characterizations of [CpRu(Phen)(L)] complexes with (large) lipophilic non-coordinating (PF6 and BArF) and coordinating TRISPHAT-N anions are reported. Complex [CpRu(η6-naphthalene)][BArF] ( [1][BArF] ) is readily accessible, in high yield, by direct counterion exchange between [1][PF6] and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) salts. Ligand exchange of [1][BArF] in acetonitrile generated stable [Ru(η5-C5H5)(CH3CN)3][BArF] ( [2][BArF] ) complex in high yield. Then, the desired [CpRu(Phen)(CH3CN)] ( [3] ) complexes were obtained from either the [1] or [2] complex in the presence of the 1,10-phenanthroline as ligand. For characterization and comparison purposes, the anionic hemilabile ligand TRISPHAT−N (TTN) was introduced on the ruthenium center, from the complex [3][PF6] , to quantitatively generate the desired complex [CpRu(Phen)(TTN)] ( [4] ) by displacement of the remaining acetonitrile ligand and of the PF6 anion. Solid state structures of complexes [1][BArF] , [2][BArF] , [3][BArF] , [3][PF6] and [4] were determined by X-ray diffraction studies and are discussed herein.  相似文献   

7.
A series of half‐sandwich Ru(II)–arene complexes [Ru(η6‐benzene)(diimine)Cl](PF6) ( 1 – 4 ), where diimine is 1,10‐phenanthroline ( 1 ), 5,6‐dimethyl‐1,10‐phenanthroline ( 2 ), dipyrido[3,2‐a:2′,3′‐c]phenazine ( 3 ) or 11,12‐dimethyldipyrido[3,2‐a:2′,3′‐c]phenazine ( 4 ), have been isolated and characterized using analytical and spectral methods. Complex 2 possesses a familiar pseudo‐octahedral ‘piano‐stool’ structure. The intrinsic DNA binding affinity of the complexes depends upon the diimine ligand: 3 (dppz) > 4 (11,12‐dmdppz) > 2 (5,6‐dmp) > 1 (phen). The π‐stacking interaction of extended planar ring of coordinated dppz ( 3 ) in between the DNA base pairs is more intimate than that of phen ( 1 ), and the incorporation of methyl groups on the dppz ring ( 4 ) discourages the stacking interaction leading to a lower DNA binding affinity for 4 than 3 . Docking studies show that all the complexes bind in the major groove of DNA. Interestingly, 3 shows an ability to convert supercoiled DNA into nicked circular DNA even at 20 μM concentration beyond which complete oxidative DNA degradation is observed. The protein binding affinity of the complexes decreases in the order 4 > 3 > 2 > 1 , and the higher protein binding affinity of 4 illustrates the strong involvement of methyl groups on dppz ring in hydrophobic interaction with protein. Also, 4 cleaves protein more efficiently than the other complexes in the presence of H2O2. It is notable that 2 , 3 and 4 display cytotoxicity against human cervical cancer cell lines (SiHa) with potency higher than the currently used drug cisplatin. Acridine orange/ethidium bromide staining studies reveal that 3 induces apoptosis in cancer cells much more efficiently than 4 .  相似文献   

8.
Dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene?=?C6H6; p iPrC6H4Me; C6Me6) and monomeric cyclopentadienyl complexes [(η5-Cp)Ru(PPh3)2Cl] (Cp?=?cyclopentadienyl) react with polypyridyl nitrogen ligands L1 (3-(pyridin-2-yl)-1H-1,2,4-triazole) and L2 (1,3-bis(di-2-pyridylaminomethyl)benzene) in methanol to afford cationic mononuclear compounds [(η6-arene)Ru(L1)Cl]+ (arene?=?C6H6, 1; p iPrC6H4Me, 2; C6Me6, 3), [(η6arene)Ru(L2)Cl]+ (arene?=?C6H6, 4; p iPrC6H4Me, 5; C6Me6, 6), [(η5-Cp)Ru(L1)(PPh3)]+ (7), and [(η5Cp)Ru(L2)(PPh3)]+ (8). All cationic mononuclear compounds were isolated as their hexafluorophosphate salts and characterized by elemental analyses, NMR, and IR spectroscopic methods and some representative complexes by UV-Vis spectroscopy. The solid state structures of two derivatives, [6]PF6 and [7]PF6, have been determined by the X-ray structure analysis.  相似文献   

9.
Subtle ligand modifications on RuII-polypyridyl complexes may result in different excited-state characteristics, which provides the opportunity to tune their photo-physicochemical properties and subsequently change their biological functions. Here, a DNA-targeting RuII-polypyridyl complex (named Ru1 ) with highly photosensitizing 3IL (intraligand) excited state was designed based on a classical DNA-intercalator [Ru(bpy)2(dppz)] ⋅ 2 PF6 by incorporation of the dppz (dipyrido[3,2-a:2′,3′-c]phenazine) ligand tethered with a pyrenyl group, which has four orders of magnitude higher potency than the model complex [Ru(bpy)2(dppz)] ⋅ 2 PF6 upon light irradiation. This study provides a facile strategy for the design of organelle-targeting RuII-polypyridyl complexes with dramatically improved photobiological activity.  相似文献   

10.
The diastereoselective κ2-P,N-coordination of a chiral tricyclic β-iminophosphine ligand to the half-sandwich ruthenium(II) fragments [RuCl(η6-arene)]+ (arene = C6H6, p-cymene, 1,3,5-C6H3Me3, C6Me6), [Ru(η6-p-cymene)(NCMe)]2+ and [Ru(η5-C5H5)(NCMe)]+ is described. The structures of the resulting mono- and dicationic cymene derivatives have been confirmed by X-ray crystallography. Studies on the catalytic activity of these Ru(II) compounds in Diels–Alder cycloaddition processes are also reported.  相似文献   

11.
A series of polypyridine ruthenium complexes of the general formula {Ru(Rph‐tpy)[dppz(COOH)]Cl} PF6 with R = Br ( 1 ), Cl ( 2 ), NO2 ( 3 ) where Rph‐tpy is 4′‐(4‐Rphenyl‐2,2′:6′,2″‐terpyridine and dppz(COOH) is dipyrido[3,2‐a:2′,3′‐c]phenazine‐2‐carboxylic acid were prepared and characterized. These complexes display intense metal‐to‐ligand charge‐transfer (MLCT) bands centered about 500 nm. The effect of pH on the absorption spectra of these complexes consisting of protonatable ligands has been investigated in water solution by spectrophotometric titration. The electrochemistry shows oxidation potentials for the Ru(II)–Ru(III) couple at +0.881 ( 1 ), +0.907 ( 2 ) and +0.447 V ( 3 ), respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy.  相似文献   

13.
Abstract

The interaction of [Ru(η6-arene)(μ-Cl)Cl]2 and Ir(η5-C5Me5)(μ-Cl)Cl]2 with a new Ionic Liquid-based phosphinite ligand, [(Ph2PO)-C6H9N2Ph]Cl, (2) gave [Ru((Ph2PO)-C6H9N2Ph)(η6-p-cymene)Cl2]Cl (3), [Ru((Ph2PO)-C6H9N2Ph)(benzene)Cl2]Cl (4) and [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5), complexes. All the compounds were characterized by a combination of multinuclear NMR and IR spectroscopy as well as elemental analysis. Furthermore, the Ru(II) and Ir(III) catalysts were applied to asymmetric transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with good activity (up to 55% ee and 99% conversion) under mild conditions. Notably, [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5) is more active than the other analogous complexes in the transfer hydrogenation (up to 81% ee).  相似文献   

14.
The mononuclear η5-cyclopentadienyl complexes [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br] and pentamethylcyclopentadienyl complex [(η5-C5Me5)Ru(PPh3)2Cl] react in the presence of 1 eq. of the tetradentate N,N′-chelating ligand 3,5-bis(2-pyridyl)pyrazole (bpp-H) and 1 eq. of NH4PF6 in methanol to afford the mononuclear complexes [(η5-C5H5)Ru(PPh3)(bpp-H)]PF6 ([1]PF6), [(η5-C5H5)Os(PPh3)(bpp-H)]PF6 ([2]PF6) and [(η5-C5Me5)Ru(PPh3)(bpp-H)]PF6 ([3]PF6), respectively. The dinuclear η5-pentamethylcyclopentadienyl complexes [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2 as well as the dinuclear η6-arene ruthenium complexes [(η6-C6H6)Ru(μ-Cl)Cl]2 and [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2 react with 2 eq. of bpp-H in the presence of NH4PF6 or NH4BF4 to afford the corresponding mononuclear complexes [(η5-C5Me5)Rh(bpp-H)Cl]PF6 ([4]PF6), [(η5-C5Me5)Ir(bpp-H)Cl]PF6 ([5]PF6), [(η6-C6H6)Ru(bpp-H)Cl]BF4 ([6]BF4) and [(η6-p-iPrC6H4Me)Ru(bpp-H)Cl]BF4 ([7]BF4). However, in the presence of 1 eq. of bpp-H and NH4BF4 the reaction with the same η6-arene ruthenium complexes affords the dinuclear salts [(η6-C6H6)2Ru2(bpp)Cl2]BF4 ([8]BF4) and [(η6-p-iPrC6H4Me)2Ru2(bpp)Cl2]BF4 ([9]BF4), respectively. These compounds have been characterized by IR, NMR and mass spectrometry, as well as by elemental analysis. The molecular structures of [1]PF6, [5]PF6 and [8]BF4 have been established by single crystal X-ray diffraction studies and some representative complexes have been studied by UV–vis spectroscopy.  相似文献   

15.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

16.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The phenanthrene complex of ruthenium(II), [Ru(η6-phenanthrene)(1,5-η5-cyclooctadienyl)]PF6 (2c), is prepared by the reaction of Ru(η4-1,5-COD)(η6-1,3,5-COT) (1) with phenanthrene and HPF6 in 65% yield. Similar treatments with di- tri-, tetra- and pentacyclic arenes give corresponding polycyclic arene complexes, [Ru(η6-polycyclic arene)(1-5-η5-cyclooctadienyl)]PF6 [polycyclic arene = naphthalene (2b), anthracene (2d), triphenylene (2e), pyrene (2f) and perylene (2g)] in 46-90% yields. The molecular structure of the perylene complex 2g is characterized by X-ray crystallography. Reaction of 2c with NaBH4 gives a mixture of the 1,5- and 1,4-COD complexes of ruthenium(0), Ru(η6-phenanthrene)(η4-1,5-COD) (3c) and Ru(η6-phenanthrene)(η4-1,4-COD) (4c) in 76% in 1:8 molar ratio. The arene exchange reactions among cationic complexes [Ru(η6-arene)(1-5-η5-cyclooctadienyl)]PF6 (2) showed the coordination ability of arenes in the following order: benzene ∼ triphenylene > phenanthrene > naphthalene > perylene ∼ pyrene > anthracene, suggesting the benzo fused rings, particularly those of acenes, decreasing thermal stability of the arene complex.  相似文献   

18.
A new Schiff base, (pyridin-2-yl)-N-(3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl)methanimine, (L), was synthesized. Reaction of [(η6-arene)Ru(µ-Cl)Cl]2 and [Cp*M(µ-Cl)Cl]2 (M = Rh and Ir) with one equivalent of L in the presence of NH4PF6 in methanol yielded dinuclear complexes, [(η6-arene)2Ru2(L-OH)Cl](PF6)2 {arene = C6H6 (1), p-iPrC6H4Me (p-cymene) (2) and C6Me6 (3)}, and [Cp*2M2(L-OH)Cl](PF6)2 [M = Rh (4) and Ir (5)], respectively, leading to the formation of five new chiral complexes with –OH on the azomethine carbon. L is a pentadentate ligand where one of the metal centers is coordinated to two nitrogen atoms in a bidentate chelating fashion while the other metal is bonded tridentate to three nitrogen atoms. Although the ligand is neutral before coordination, after complexation it is anionic (uni-negative) with negative charge on the azo nitrogen {see the structures: N(5) in 2[PF6]2 and N(3) for 4[PF6]2}. The complexes have been characterized by various spectroscopic methods including infrared and 1H NMR and the molecular structures of the representative complexes are established by single-crystal X-ray diffraction studies.  相似文献   

19.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

20.
Transition Metal Chemistry - Four half-sandwich Ru(II) complexes (1)–(4) with the general formulae [Ru(η6-p-cymene)(L)Cl2] were synthesized by the reaction of one equivalent of the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号