首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Measurement of the state of polarization of reflected light (ellipsometry) permits the determination of the thickness and refractive index of thin layers formed on a surface. The IR absorption spectra of such thin layers, which can be measured by means of internal reflection spectroscopy (IRS), provide information about their chemical composition. These methods have been used to study adsorption processes and the formation of reaction layers at semiconductor interfaces, and may also be used for measurements of free charge carriers in the space-charge region and in surface states. Results of such investigations are given in this article.  相似文献   

2.
The fundamentals of chemical derivatization techniques as applied to the quantitative analysis of ultrathin surface layers of various organic compounds via functional groups were considered. Using X-ray photoelectron spectroscopy as an example of the most informative and almost nondestructive technique for characterization of thin layers, the general requirements imposed on the selective chemical reactions and possible artifacts were discussed. The validity of the technique was illustrated by the examples of analyses of surface layers of organic polymers with known concentrations of surface functional groups, plasma-modified polymers, and carbon fibers. It was noted that selective chemical reactions are successfully used in other techniques for studying material surfaces. The surface analysis of organic materials via functional groups can be performed with a simultaneous increase in the sensitivity of the corresponding spectral technique.  相似文献   

3.
Complex polymers are distributed in more than one direction of molecular heterogeneity. In addition to the molar mass distribution, they are frequently distributed with respect to chemical composition, functionality, and molecular architecture. For the characterization of the different types of molecular heterogeneity it is necessary to use a wide range of analytical techniques. Preferably, these techniques should be selective towards a specific type of heterogeneity. The combination of two selective analytical techniques is assumed to yield a two-dimensional information on the molecular heterogeneity. For the analysis of complex polymers different liquid chromatographic techniques have been developed, including size exclusion chromatography (SEC) separating with respect to hydrodynamic volume, and liquid adsorption chromatography (LAC) which is used to separate according to chemical composition. Liquid chromatography at the critical point of adsorption (LC-CC) has been shown to be a versatile method for the determination of the functionality type distribution of macromonomers, the molecular architecture of homopolymers and the chemical heterogeneity of block and graft copolymers. The present paper presents the principle ideas of combining different analytical techniques in multidimensional analysis schemes for the analysis of polymers with complex architectures. Branched block and graft copolymers can efficiently be analyzed with respect to chemical composition and molar mass by LC-CC and two-dimensional chromatography. The chemical heterogeneity as a function of molar mass can be determined by combining interaction chromatography and FTIR spectroscopy. For the analysis of star-like polymers LC-CC is shown to be a powerful technique when the molar mass of different segments (blocks, grafts) must be determined.  相似文献   

4.
After the systematic study of poly(vinyl acetate) degradation presented in part 1, this work reports results from the analysis of polymeric materials from five Italian design lamps from the 1960s made of the material known as cocoon. Micro- and non-destructive molecular spectroscopic techniques have been applied directly on the object surfaces using an optical fibre probe and through examination of micro-samples: the combined use of Fourier-transform infrared spectroscopy (FTIR), pyrolysis gas-chromatography/mass-spectrometry (py-GC/MS) and Fluorescence spectroscopy allowed the assessment of the material composition and the chemical modifications of the polymers related to on-going deterioration processes. Fluorescence spectroscopy proved particularly sensitive for the detection of variations in composition among lamps and between areas on the same object, and was used to classify objects in different groups using principal component analysis of excitation emission spectra. Specific degradation products have been mapped using FTIR on micro-samples. Moreover, the interpretation of the emission spectra of the studied polymeric lamps suggests that fluorescence spectroscopy can be used for non-destructive monitoring of the degradation of historical polymeric objects.  相似文献   

5.
Thin polymer layers, obtained by polymerization of styrene vapour in an electrical discharge, are insoluble in solvents for usual polystyrene. However, characterization of the gas discharge polymer, by i.r. spectroscopy, by visible and near u.v. spectroscopy and by chemical microanalyses, show that this material is very near to ordinary polystyrene; this conclusion is further indicated by similarity of the glass transition temperatures of the polymers. However, there are some spectral differences, and an evident reactivity to oxygen and to atmospheric moisture.  相似文献   

6.
Interpretation of X-ray photoelectron spectroscopy (XPS) spectra of complex material surfaces, such as those obtained after surface plasma treatment of polymers, is confined by the available references. The limited understanding of the chemical surface composition may impact the ability to determine suitable coupling chemistries used for surface decoration or assess surface-related properties like biocompatibility. In this work, XPS is used to investigate the chemical composition of various ultra-high-molecular-weight polyethylene (UHMWPE) surfaces. UHMWPE doped with α-tocopherol or functionalised by active screen plasma nitriding (ASPN) was investigated as a model system. Subsequently, a more complex combined system obtained by ASPN treatment of α-tocopherol doped UHMWPE was investigated. Through ab initio orbital calculations and by employing Koopmans' theorem, the core-electron binding energies (CEBEs) were evaluated for a substantial number of possible chemical functionalities positioned on PE-based model structures. The calculated ΔCEBEs showed to be in reasonable agreement with experimental reference data. The calculated ΔCEBEs were used to develop a material-specific peak model suitable for the interpretation of merged high-resolution C 1 s, N 1 s and O 1 s XPS spectra of PE-based materials. In contrast to conventional peak fitting, the presented approach allowed the distinction of functionality positioning (i.e. centred or end-chain) and evaluation of the long-range effects of the chemical functionalities on the PE carbon backbone. Altogether, a more detailed interpretation of the modified UHMWPE surfaces was achieved whilst reducing the need for manual input and personal bias introduced by the spectral analyst.  相似文献   

7.
The investigations on structure and micro-chemical composition of archaeological metal alloys are needed in archaeometry. The aim of this study is devoted both to acquire information about their provenance and production technology, and to improve our understanding about the corrosion processes. In this paper we present the study of the corrosion phenomena of bronze samples, laboratory-made according to binary, ternary and quaternary alloys typical of Roman archaeometallurgical production through an integrated methodology based on the use of non or micro invasive physical techniques. Among the analysed samples, two were artificially aged through burial in the archaeological site of Tharros, along the west coast of Sardinia (Italy). The corrosion products, typical of the bronzes in archaeological sites near the sea, have been characterized by non invasive and micro-destructive measurements. In particular, the corrosion patinas were examined through optical microscopy, scanning electron microscopy and microanalysis, X-ray fluorescence and laser ablation spectroscopy. The use of integrated technologies allowed us to determine both the elemental composition and surface morphology of the patina, highlighting the correlation between patina nature and chemical composition of the burial context. Moreover, data obtained by the laser-induced breakdown spectroscopy along the depth profile on the samples, have yielded information about the stratigraphic layers of corrosion products and their growth. Finally, the depth profiles allowed us to verify both the chemical elements constituting the patina, the metal ions constituting the alloy and the occurrence of migration phenomena from bulk to the surface.  相似文献   

8.
In this study, we examined the influence of surfactants on the adsorption of polymers on cotton fibers. The extent of polymer adsorption on cotton was determined directly by means of fluorescence spectroscopy using fluorescently labeled polymers. The investigation of polymer adsorption in the presence of different types of surfactants and for a large range of differently structured polymers allows us to obtain a rather general picture of this important issue. Systematic relationships between the presence of surfactant and the type of polymer can be deduced but cannot be cast in simple terms such as electrostatic interaction but instead depend on the detailed interaction between the surfactant and polymer both in solution and adsorbed on the cotton surface. A particularly complex situation arises for the case of oppositely charged surfactant and polymer because of the possibility of precipitate formation. The study of such complex systems not only is of scientific interest but also is of great commercial interest because both polymers and surfactants are parts of detergent formulations and cotton is one of the most abundantly used materials for fabrics.  相似文献   

9.
In this study, we compare near-infrared (NIR) and Raman spectroscopy for the determination of the density of linear low density polyethylene (PE) (in a pellet form). As generally known, Raman spectral features are more selective than those of NIR for most chemical samples. NIR spectroscopy has been more extensively used for the quantitative analysis of polymers, but Raman spectroscopy is the better choice as long as the problem of reproducibility of Raman measurements (especially for solid samples), mostly resulting from insufficient sample representation due to probing only localized chemical information and the sensitivity of sample placement with regard to the focal plane, can be overcome. To improve sample representation and reproducibility of Raman measurements, we have employed the wide area illumination (WAI) Raman scheme, capable of illuminating a laser onto a large sample area (28.3 mm2) for Raman spectral collection (a 6-mm laser spot with a focal length of 248 mm). Diffuse reflectance NIR spectra of PE pellets were collected using a sample moving system which allowed for the scanning of large areas. The prediction error was 0.0008 g cm−3 for Raman spectroscopy and 0.0011 g cm−3 for NIR spectroscopy. The harmonization of inherently selective Raman features and a reproducible spectral collection with correct sample representations using the WAI scheme led to an accurate determination of the density of the PE pellets.  相似文献   

10.
A study of the chemical composition of renal stones is important for understanding their etiology. And the therapy for the stone disease is usually based on the analysis of calculi, permitting a porper management of the disease and the prevention of its recurrence. FTIR spectroscopy has been used for urinary stones analysis. The routine, easy and rapid measurements give unambiguous information about the stone composition. Especially a precise wavelength scale of the Fourier method is helpful here. A relatively good spatial resolution is important as very often the stones are composed of core and various layers of different chemical composition. A quantitative determination of the proportion of various materials in calculi is also possible.  相似文献   

11.
Principal component analysis (PCA) is widely used as an exploratory data analysis tool in the field of vibrational spectroscopy, particularly near-infrared (NIR) spectroscopy. PCA represents original spectral data containing large variables into a few feature-containing variables, or scores. Although multiple spectral ranges can be simultaneously used for PCA, only one series of scores generated by merging the selected spectral ranges is generally used for qualitative analysis. Alternatively, the combined use of an independent series of scores generated from separate spectral ranges has not been exploited.The aim of this study is to evaluate the use of PCA to discriminate between two geographical origins of sesame samples, when scores independently generated from separate spectral ranges are optimally combined. An accurate and rapid analytical method to determine the origin is essentially required for the correct value estimation and proper production distribution. Sesame is chosen in this study because it is difficult to visually discriminate the geographical origins and its composition is highly complex. For this purpose, we collected diffuse reflectance near-infrared (NIR) spectroscopic data from geographically diverse sesame samples over a period of eight years. The discrimination error obtained by applying linear discriminant analysis (LDA) was improved when separate scores from two spectral ranges were optimally combined, compared to the discrimination errors obtained when scores from singly merged two spectral ranges were used.  相似文献   

12.
Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data.  相似文献   

13.
As a part of a systematic study aimed at assessing the chemical composition of ancient pigments as well as at collecting information useful for the understanding of the technical aspects related to pottery preservation and decoration, the results of analysis performed on red, brown and black pigments decorating pre-Roman pottery excavated in thirteen different tombs unearthed in the archaeological zone of Canosa (Puglia, Italy) are presented. Both surface (XPS) and bulk (FT-IR) spectroscopies were used which gave complementary information and XRD was used in some cases to further support the spectral assignments. Results suggested that the shards characterized by “nominally” the same color could be differentiated by the chemical composition of the pigmented layers; in particular, the shards exhibiting the red pigment could be divided into three groups containing, respectively, either hematite or ochre plus other substances not related to the color but of great concern for the understanding of ancient techniques used for color preparation. Manganese oxides were found to be the basis of the brown pigments, which could be divided into three groups on the basis of Mn and Fe contents. Either magnetite or carbon of vegetable origin was found in the black-pigmented layers. Furthermore, an attempt was made to find a possible correlation between this classification and the results of a provenance study carried out on the same pool of shards analyzed in the present investigation.  相似文献   

14.
Recent studies of bulk and interfacial properties of polymer–surfactant systems using neutron scattering and neutron reflectivity are presented, with some discussions on a few selected systems. In bulk, the principal interests are centred on thermosensitive and hydrophobically modified associative polymers, where structural information has been used to interpret the effects of surfactants on the solubilization behavior, phase separation and gelation processes of these polymers. Conversely, the effects of polymers anchored in surfactant layers and membranes and the resulting phase changes in microemulsion systems have also received much interest. At the interface, information obtained on the structure and composition of mixed polymer–surfactant layers is discussed in relation to the surface tension and stability of these layers.  相似文献   

15.
To support the translation of Raman spectroscopy into clinical applications, synthetic models are needed to accurately test, optimize and validate prototype fiber optic instrumentation. Synthetic models (also called tissue phantoms) are widely used for developing and testing optical instrumentation for diffuse reflectance, fluorescence, and Raman spectroscopies. While existing tissue phantoms accurately model tissue optical scattering and absorption, they do not typically model the anatomic shapes and chemical composition of tissue. Because Raman spectroscopy is sensitive to molecular composition, Raman tissue phantoms should also approximate the bulk tissue composition. We describe the fabrication and characterization of tissue phantoms for Raman tomography and spectroscopy. These phantoms have controlled chemical and optical properties, and also multilayer morphologies which approximate the appropriate anatomic shapes. Tissue phantoms were fabricated to support on-going Raman studies by simulating the human wrist and rat leg. Surface meshes (triangle patch models) were generated from computed tomography (CT) images of a human arm and rat leg. Rapid prototyping was used to print mold templates with complex geometric patterns. Plastic casting techniques used for movie special effects were adapted to fabricate molds from the rapid prototypes, and finally to cast multilayer gelatin tissue phantoms. The gelatin base was enriched with additives to model the approximate chemistry and optical properties of individual tissue layers. Additional studies were performed to determine optimal casting conditions, phantom stability, layer delamination and chemical diffusion between layers. Recovery of diffuse reflectance and Raman spectra in tissue phantoms varied with probe placement. These phantoms enable optimization of probe placement for human or rat studies. These multilayer tissue phantoms with complex geometries are shown to be stable, with minimal layer delamination and chemical diffusion.  相似文献   

16.
《Electroanalysis》2017,29(5):1377-1387
Electrical properties of thin dielectric films at the solid‐liquid phase boundary are an important performance characteristic of many devices, coatings and sensors. In this paper, co‐polymeric hydrogels of polyacrylic acid co‐sulfonic acid, swollen with a salt solution to act as the solid electrolyte, were used to assess interfaces using electrochemical impedance spectroscopy (EIS) in a co‐planar geometry. Silane‐modified glasses were characterized by the co‐planar hydrogel EIS cell and found to be distinguishable based on their surface monolayer chemistry. EIS measurements were also made on primed and painted metal substrates, using both test panels and an outdoor sculpture, Tony Smith's Stinger . The panels were then exposed to accelerated and outdoor weathering and showed degradation on the surface paint layers, which was observable electrochemically using EIS and confirmed visually by SEM. Electrochemical spectral features were compared between data from a standard paint‐test cell versus this co‐planar hydrogel cell; both cell types were able to measure coating capacitance, providing useful information about the condition of the bulk coating. Yet, sheet resistance (Rs) was a spectral feature seen only by the co‐planar hydrogel cell. Thus, it can be concluded that the use of such co‐planar hydrogel cells can provide an earlier warning sign to coating degradation and such cells provide a new type of spectral information that is not assessable by the standard geometry.  相似文献   

17.
The combination of an atomic force microscope (AFM) with a Confocal Raman Microscope (CRM) has been used to study the composition of various thin films of polymer blends. The high spatial resolution of the AFM enables the morphological characterization of the polymer blends on the nanometer scale. Furthermore, when operating the AFM in Digital Pulsed Force Mode (DPFM), topographic information and local stiffness can be simultaneously recorded. This allows the material-sensitive characterization of heterogeneous materials. Thin films where PMMA (at room temperature a glassy polymer) is blended with two different styrene-butadiene rubbers are investigated. The presence of PMMA in both phase-separated thin films allows the comparison of the mechanical properties of the two different rubber phases using DPFM-AFM. When PMMA is blended with PET due to their similar mechanical properties (both are in the glassy state at room temperature) the assignment of the two phases to the corresponding polymers by AFM is rather difficult. Here, Raman spectroscopy provides additional information on the chemical composition of materials. In combination with a confocal microscope, the spatial distribution of the various phases can be determined with a resolution down to 200 nm. Therefore, the topographically different structures observed in AFM images can be associated to the chemical composition by using the Confocal Raman Microscope (CRM).  相似文献   

18.
As a part of a systematic study aimed at assessing the chemical composition of ancient pigments as well as at collecting information useful for the understanding of the technical aspects related to pottery preservation and decoration, the results of analysis performed on red, brown and black pigments decorating pre-Roman pottery excavated in thirteen different tombs unearthed in the archaeological zone of Canosa (Puglia, Italy) are presented. Both surface (XPS) and bulk (FT-IR) spectroscopies were used which gave complementary information and XRD was used in some cases to further support the spectral assignments. Results suggested that the shards characterized by “nominally” the same color could be differentiated by the chemical composition of the pigmented layers; in particular, the shards exhibiting the red pigment could be divided into three groups containing, respectively, either hematite or ochre plus other substances not related to the color but of great concern for the understanding of ancient techniques used for color preparation. Manganese oxides were found to be the basis of the brown pigments, which could be divided into three groups on the basis of Mn and Fe contents. Either magnetite or carbon of vegetable origin was found in the black-pigmented layers. Furthermore, an attempt was made to find a possible correlation between this classification and the results of a provenance study carried out on the same pool of shards analyzed in the present investigation. Received: 28 May 1999 / Revised: 6 August 1999 / Accepted: 21 August 1999  相似文献   

19.
Coherent control of chemical species in complex systems is always subject to intrinsic inhomogeneities from the environment. For example, slight chemical modifications can decisively affect transport properties of molecules on surfaces. Hence, single-molecule (SM) studies are the best solution to avoid these problems and to study diverse phenomena in biology, physics, and chemistry. Along these lines, monitoring SM redox processes has always been a "holy grail" in electrochemistry. To date, claims of SM electrochemistry by spectroscopy have come only from fluorescence quenching of polymers and redox-fluorescent molecules. In unconnected developments, the potential of the bianalyte surface-enhanced Raman scattering (SERS) method as a technique with SM sensitivity has been demonstrated. Raman spectroscopy has the potential to explore SM detection of any molecule, independent of its chemical nature. We provide definitive proof of SM events following redox cycles using SERS. The superior sensitivity and spectral richness of SERS makes it general enough to study, in principle, SM electron transfer of any (label-free) molecule.  相似文献   

20.
The submicron liquid droplets constituting the particulate matter of mainstream tobacco smoke (PMMTS) are viscous and of a composition that is complex and poorly understood. PMMTS is often approximately 80% w/w 'tar' where 'tar'=total PMMTS- (nicotine+water). Many of the chemical agents in MTS responsible for smoking-related cancers are found at least partially in the PMMTS portion of MTS. The properties of PMMTS vary with brand and with puffing patterns. The chemical forms and total levels of nicotine, the identities/levels of other compositionally dominant compounds, and the identities/levels of carcinogens are of interest. Most studies of the composition of PMMTS have involved extraction then chromatography. Such methods allow the determination of low-level constituents, but alter the samples such that direct information regarding chemical conditions within the PMMTS cannot be obtained. Here, we utilize nuclear magnetic resonance spectroscopy (NMR) to examine native PMMTS in conventional cigarettes, including measurements of the brand-dependent fraction of PMMTS nicotine that is in the free-base form (increasing this fraction in inhaled tobacco smoke affects the rates of the processes governing nicotine deposition in the respiratory tract, and so has implications for smoking behavior and addiction). We also demonstrate the use of NMR for characterizing the composition of PMMTS (including the levels of selected cigarette additives) when the cosolvent DMSO-d6 is added to improve spectral resolution. The native and solvent-assisted results open the door to a range of future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号