首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In recent years, the strategy of inhibiting the interactions of p53 with murine double minute 2(MDM2)and murine double minute X(MDMX) has been proved to be a promising approach for tumor therapy.However, the poor proteolytical stability and low intracellular delivery efficiency of peptide inhibitors limit their clinical application. Here, we designed and synthesized the bicyclic stapled peptides based on p53 by combining all-hydrocarbon stapling and lactam stapling strategies. We demonstrated th...  相似文献   

2.
《中国化学快报》2023,34(6):108026
Bicyclic peptides, a class of polypeptides with two loops within their structure, have emerged as powerful tools in the development of new peptide drugs. They have the potential to bind to challenged drug targets, with antibody-like affinity and selectivity. Meanwhile, bicyclic peptides possess small molecule-like access to chemical synthesis, which is conducive to large-scale synthesis and screening. In the last five years, bicyclic peptide technology has been increasingly developed, and researchers have carried out a variety of studies to elucidate the potential functions of bicyclic peptides. With the continuous development of synthetic methods and the advances of new technology to build bicyclic peptide libraries, bicyclic peptides are now becoming widely used in the development of new drugs for various diseases. This perspective provides an overview of the structure types, synthesis and applications of bicyclic peptides in current drug development, and our own views on future challenges of bicyclic peptides.  相似文献   

3.
Bicyclic peptides generated through directed evolution by using phage display offer an attractive ligand format for the development of therapeutics. Being nearly 100‐fold smaller than antibodies, they promise advantages such as access to chemical synthesis, efficient diffusion into tissues, and needle‐free application. However, unlike antibodies, they do not have a folded structure in solution and thus bind less well. We developed bicyclic peptides with hydrophilic chemical structures at their center to promote noncovalent intramolecular interactions, thereby stabilizing the peptide conformation. The sequences of the peptides isolated by phage display from large combinatorial libraries were strongly influenced by the type of small molecule used in the screen, thus suggesting that the peptides fold around the small molecules. X‐ray structure analysis revealed that the small molecules indeed formed hydrogen bonds with the peptides. These noncovalent interactions stabilize the peptide–protein complexes and contribute to the high binding affinity.  相似文献   

4.
A one-bead-two-compound (OBTC) library of structurally rigidified bicyclic peptides was chemically synthesized on TentaGel microbeads (90 μm), with each bead displaying a unique bicyclic peptide on its surface and a linear encoding peptide of the same sequence in its interior. Screening of the library against oncogenic K-Ras G12V mutant identified two classes of Ras ligands. The class I ligands apparently bind to the effector-binding site and inhibit the Ras–Raf interaction, whereas the class II ligand appears to bind to a yet unidentified site different from the effector-binding site. These Ras ligands provide useful research tools and may be further developed into therapeutic agents.  相似文献   

5.
Two new cyclic RGD peptides were prepared using a click chemistry approach. The linear RGDfV peptide was synthesized by solid-phase peptide synthesis using a 9-fluorenylmetoxicarbonyl (Fmoc) strategy and a 2-chlorotrityl chloride resin. After coupling 5-hexynoic acid the peptide was cleaved from the resin and linked to propargylamine. The bis-alkynyl RGDfV peptide was then reacted with two different bis-azides by treatment with copper iodide and triethylamine. These two cyclic RGD peptides were characterized by NMR and HRMS. In order to evaluate the interaction of these new compounds with integrin αvβ3 docking experiments were carried out and the results compared with those obtained with cyclo(RGDf[N–Me]V) (Cilengitide). The two new cyclic RGD peptides showed a higher affinity to the αvβ3 integrin when compared with Cilengitide thus representing two new potential integrin αvβ3 antagonists.  相似文献   

6.
Two copper(II) complexes of the saccharinate anion (sac) with piperazine (ppz) and N-(2-aminoethyl)piperazine (aeppz), namely [Cu(sac)2(ppz)(H2O)]n (1) and trans-[Cu(sac)2(aeppz)2] (2), have been synthesized and characterized by elemental analyses, UV–Vis, FT-IR, TGA/DTA, X-ray diffraction and magnetic measurements. The ppz ligands in 1 bridge the copper(II) centers through both nitrogen atoms to form a 1D helical chain structure and the distorted trigonal-bipyramidal coordination geometry at each copper center is completed by an aqua and a pair of N-bonded sac ligands. The helical chains are linked by Ow–H?O hydrogen bonds to build a 2-D network. In complex 2, copper(II) ions are octahedrally coordinated by two sac anions and two neutral aeppz ligands, displaying a distorted octahedral coordination. Sac is O-bonded via the carbonyl group, while ppzea acts as a N,N′-bidentate chelating ligand. The molecules are connected by N–H?N and N–H?O hydrogen bonds, forming a linear chain. In the thermal decomposition of both complexes, the removal of the aqua and ppz or aeppz ligand takes place endothermically in the first stages and the sac moiety undergoes highly exothermic decomposition at higher temperatures to give CuO.  相似文献   

7.
8.
In recent decades, diverse drug delivery systems (DDS) constructed by self‐assembly of dendritic peptides have shown advantages and improvable potential for cancer treatment. Here, an arginine‐enriched dendritic amphiphilic chimeric peptide CRRK(RRCG(Fmoc))2 containing multiple thiol groups is programmed to form drug‐loaded nano‐micelles by self‐assembly. With a rational design, the branched hydrophobic groups (Fmoc) of the peptides provide a strong hydrophobic force to prevent the drug from premature release, and the reduction‐sensitive disulfide linkages formed between contiguous peptides can control drug release under reducing stimulation. As expected, specific to multidrug resistance (MDR) tumor cells, the arginine‐enriched peptide/drug (PD) nano‐micelles show accurate nuclear localization ability to prevent the drug being pumped by P‐glycoprotein (P‐gp) in vitro, as well as exhibiting satisfactory efficacy for MDR tumor treatment in vivo. This design successfully realizes stimuli‐responsive drug release aimed at MDR tumor cells via an ingenious sequence arrangement.  相似文献   

9.
Conjugation of cytokine-neutralizing monoclonal antibodies (mAb) to hyaluronic acid (HA) having Mw of 1.6 MDa was previously shown to be an effective strategy for localized delivery to sites of inflammation. Despite the disparity in size of the mAb and HA, the mAb–HA conjugate was found bind tumor necrosis factor-α (TNFα) as strongly as the non-conjugated antibody, suggesting conjugation to this charged polysaccharide can provide an alternative to poly(ethylene glycol) (PEG) conjugation, which has been shown to reduce binding interactions for many proteins. To explore conjugation chemistries more systematically, we report a study on a model peptide inhibitor of tumor necrosis factor-α to investigate the effects of site-specific conjugation to HA and PEG. We compared the binding affinities of a variety of WP9QY peptide–polymer conjugates for TNFα in order to examine the effects of PEG molecular weight as well as the effects of PEG versus functionalized hyaluronic acid (HA) conjugation. The results indicate that the binding affinity of the PEG conjugates decreases in comparing PEG with mass 2 k, 10 k, and 30 k, which was attributed to PEG shrouding of the peptide, while conjugation to a 66 kDa HA chain preserved peptide binding affinity. We attribute this difference to the increased solubility of HA compared to PEG, potentially due to the carboxylic acid functional groups. In addition, the results demonstrate that conjugation to HA via a short PEG linker significantly enhances the association rate kon, which may reflect an increased peptide accessibility. By balancing both the advantages associated with the PEG conjugates and with the HA conjugates, the HA–PEG2k–WP9QY conjugate was able to improve the binding affinity of the peptide for TNFα by a factor of two. Optimization of polymer chemistry could be used to improve delivery of protein therapeutics for localized and systemic administration.  相似文献   

10.
Natural disulfide-rich peptides (DRPs) are valuable scaffolds for the development of new bioactive molecules and therapeutics. However, there are only a limited number of topologically distinct DRP folds in nature, and most of them suffer from the problem of in vitro oxidative folding. Thus, strategies to design DRPs with new constrained topologies beyond the scope of natural folds are desired. Herein we report a general evolution-inspired strategy to design new DRPs with diverse disulfide frameworks, which relies on the incorporation of two cysteine residues and a random peptide sequence into a precursor disulfide-stabilized fold. These peptides can spontaneously fold in redox buffers to the expected tricyclic topologies with high yields. Moreover, we demonstrated that these DRPs can be used as templates for the construction of phage-displayed peptide libraries, enabling the discovery of new DRP ligands from fully randomized sequences. This study thus paves the way for the development of new DRP ligands and therapeutics with structures not derived from natural DRPs.

A general method was developed to design multicyclic peptides with diverse disulfide frameworks amenable to random peptide library design, enabling the development of new disulfide-rich peptide ligands and therapeutics with structures not derived from natural peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号