首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of negatively charged metal-bound Asp/Glu residues determines the net charge of the carboxylate-rich metal-binding site, which has been found to play a role in enhancing the affinity and/or selectivity of a protein cavity for a given metal cofactor. Therefore, it is of interest to know the maximum number of carboxylates that could bind to a given metal (M(q)()(+)) of charge q and the key factors determining this upper limit in protein cavities, which are usually relatively buried. Using density functional theory combined with the continuum dielectric method to compute the H(2)O --> CH(3)COO(-) exchange free energies, the maximum number of carboxylates bound to M(q)()(+) in a relatively buried metal-binding site is found to depend on (i) the metal charge, q, (ii) the carboxylate-binding mode, and (iii) the first-shell carboxylate-second-shell ligand interactions. The maximum number of carboxylates bound to M(q)()(+) in a fully/partially solvent inaccessible protein cavity would not likely exceed q + 2 if (a) the metal-bound Asp/Glu side chains are hydrogen bonded to a Lys/Arg side chain or several peptide backbone amides/Asn/Gln side chains in the metal's second coordination shell or (b) at least one acidic residue binds bidentately, as opposed to monodentately, to the metal cofactor. This number is reduced to q + 1 in the absence of stabilizing interactions from outer-shell ligand(s) and if all the carboxylates are bound monodentately to the metal cofactor in a buried cavity. The computational results are consistent with findings from a PDB survey of uni-, di-, and trivalent metal-binding sites containing Asp/Glu residues.  相似文献   

2.
A relaxation dispersion-based NMR experiment is presented for the measurement and quantitation of micros-ms dynamic processes at methyl side-chain positions in proteins. The experiment measures the exchange contribution to the 13C line widths of methyl groups using a constant-time CPMG scheme. The effects of cross-correlated spin relaxation between dipole-dipole and dipole-CSA interactions as well as the effects of scalar coupling responsible for mixing of magnetization modes during the course of the experiment have been investigated in detail both theoretically and through simulations. It is shown that the complex relaxation properties of the methyl spin system do not complicate extraction of accurate exchange parameters as long as care is taken to ensure that appropriate magnetization modes are interchanged in the middle of the constant-time CPMG period. An application involving the measurement of relaxation dispersion profiles of methionine residues in a Leu99Ala substitution of T4 lysozyme is presented. All of the methionine residues are sensitive to an exchange event with a rate on the order of 1200 s(-1) at 20 degrees C that may be linked to a process in which hydrophobic ligands are able to rapidly bind to the cavity that is present in this mutant.  相似文献   

3.
Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.  相似文献   

4.
Nonenzymatic peptide bond cleavage at asparagine (Asn) and glutamine (Gln) residues has been observed during peptide deamidation experiments; cleavage has also been reported at aspartic acid (Asp) and glutamic acid (Glu) residues. Although peptide backbone cleavage at Asn is known to be slower than deamidation, fragmentation products are often observed during peptide deamidation experiments. In this study, mechanisms leading to the cleavage of the carboxyl-side peptide bond of Asn and Asp residues were investigated using computational methods (B3LYP/6-31+G**). Single-point solvent calculations at the B3LYP/6-31++G** level were carried out in water, utilizing the integral equation formalism-polarizable continuum (IEF-PCM) model. Mechanism and energetics of peptide fragmentation at Asn were comparatively analyzed with previous calculations on deamidation of Asn. When deamidation proceeds through direct hydrolysis of the Asn side chain or through cyclic imide formationvia a tautomerization routeit exhibits lower activation barriers than peptide bond cleavage at Asn. The fundamental distinction between the mechanisms leading to deamidationvia a succinimideand backbone cleavage was found to be the difference in nucleophilic entities involved in the cyclization process (backbone versus side-chain amide nitrogen). If deamidation is prevented by protein three-dimensional structure, cleavage may become a competing pathway. Fragmentation of the peptide backbone at Asp was also computationally studied to understand the likelihood of Asn deamidation preceding backbone cleavage. The activation barrier for backbone cleavage at Asp residues is much lower (approximately 10 kcal/mol) than that at Asn. This suggests that peptide bond cleavage at Asn residues is more likely to take place after it has deamidated into Asp.  相似文献   

5.
The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its properties.  相似文献   

6.
In order to study the relation between backbone and side-chain ordering in proteins, we have performed multicanonical simulations of deka-peptide chains with various side groups. Glu(10), Gln(10), Asp(10), Asn(10), and Lys(10) were selected to cover a wide variety of possible interactions between the side chains of the monomers. All homopolymers undergo helix-coil transitions. We found that peptides with long side chains that are capable of hydrogen bonding, i.e., Glu(10), and Gln(10), exhibit a second transition at lower temperatures connected with side-chain ordering. This occurs in the gas phase as well as in solvent, although the character of the side-chain structure is different in each case. However, in polymers with short side chains capable of hydrogen bonding, i.e., Asp(10) and Asn(10), side-chain ordering takes place over a wide temperature range and exhibits no phase transition-like character. Moreover, non-backbone hydrogen bonds show enhanced formation and fluctuations already at the helix-coil transition temperature, indicating competition between side-chain and backbone hydrogen bond formation. Again, these results are qualitatively independent of the environment. Side-chain ordering in Lys(10), whose side groups are long and polar, also takes place over a wide temperature range and exhibits no phase transition-like character in both environments. Reasons for the observed chain length threshold and consequences from these results for protein folding are discussed.  相似文献   

7.
NMR relaxation data on disordered proteins can provide insight into both structural and dynamic properties of these molecules. Because of chemical shift degeneracy in correlation spectra, detailed site-specific analyses of side chain dynamics have not been possible. Here, we present new experiments for the measurement of side chain dynamics in methyl-containing residues in unfolded protein states. The pulse schemes are similar to recently proposed methods for measuring deuterium spin relaxation rates in (13)CH(2)D methyl groups in folded proteins.(1) However, because resolution in (1)H-(13)C correlation maps of unfolded proteins is limiting, relaxation data are recorded as a series of (1)H-(15)N spectra. The methodology is illustrated with an application to the study of side chain dynamics in delta131delta, a large disordered fragment of staphylococcal nuclease containing residues 1-3 and 13-140 of the wide-type protein. A good correlation between the order parameters of the symmetry axes of the methyl groups and the backbone (1)H-(15)N bond vectors of the same residue is observed. Simulations establish that such a correlation is only possible if the unfolded state is comprised of an ensemble of structures which are not equiprobable. A motional model, which combines wobbling-in-a-cone and Gaussian axial fluctuations, is proposed to estimate chi(1) torsion angle fluctuations, sigma(chi)()1, of Val and Thr residues on the basis of the backbone and side chain order parameters. Values of sigma(chi)()1 are approximately 10 degrees larger than what has previously been observed in folded proteins. Of interest, the value of sigma(chi)()1 for Val 104 is considerably smaller than for other Val or Thr residues, suggesting that it may be part of a hydrophobic cluster. Notably large (15)N transverse relaxation rates are observed in this region. To our knowledge, this is the first time that side chain dynamics in an unfolded state have been studied in detail by NMR.  相似文献   

8.
从中国林蛙皮中纯化得到了一种抗多种临床多重耐药菌的抗菌肽(RTCⅠ), 初步氨基酸组成分析结果表明其不含碱性氨基酸, 此抗菌肽在276.5和356.5 nm波长光的激发下发射出448 nm的荧光, 利用傅里叶变换红外光谱、拉曼光谱、电子吸收光谱及荧光光谱等技术研究了此特定荧光产生的结构依据. 此抗菌肽的主要组成是Tyr, Asn(Asp)和Glu(Gln), 抗菌肽特殊的荧光光谱和电子吸收谱与Tyr的酚羟基和Asn侧链的强氢键有关. 这一特殊的荧光(448 nm)及圆二色谱(259, 263和267 nm)信号为进一步在分子水平上研究此抗菌肽的抗菌机理提供了依据.  相似文献   

9.
In spite of all progressive efforts aiming to optimize SPPS, serious problems mainly affecting the assembly of aggregating sequences have persisted. Following the study intended to unravel the complex solvation phenomenon of peptide-resin beads, the XING and XAAAA model aggregating segments were labeled with a paramagnetic probe and studied via EPR spectroscopy. Low and high substituted resins were also comparatively used, with the X residue being Asx or Glx containing the main protecting groups used in the SPPS. Notably, the cyclo-hexyl group used for Asp and Glu residues in Boc-chemistry induced greater chain immobilization than its tert-butyl partner-protecting group of the Fmoc strategy. Otherwise, the most impressive peptide chain immobilization occurred when the large trytil group was used for Asn and Gln protection in Fmoc-chemistry. These surprising results thus seem to stress the possibility of the relevant influence of the amino-acid side chain protecting groups in the overall peptide synthesis yield.  相似文献   

10.
In this work, selectivity mechanism of APP-IP inhibitor (β-amyloid precursor protein-derived inhibitory peptide) over matrix metalloproteinases (MMPs including MMP-2, MMP-7, MMP-9 and MMP-14) was investigated by molecular modeling methods. Among MMPs, MMP-2 is the most favorable one for APP-IP interacting based on our calculations. The predicted binding affinities can give a good explanation of the activity difference of inhibitor APP-IP. In Comparison with MMP-2/APP-IP complex, the side chain of Tyr214MMP-7 makes the binding pocket so shallow that the whole side chain of Tyr3APP-IP can not be fully embraced, thus unfavorable for the N-terminal of APP-IP binding to MMP-7. The poor selectivity of APP-IP toward MMP-9 is mainly related with the decrease of interaction between the APP-IP C-terminal and MMP-9 due to the bulky side chains of Pro193 and Gln199, which is in agreement with experiment. The mutations at residues P193A and Q199G of MMP-9 alternate the binding pattern of the C-terminal of APP-IP by forming two new hydrogen bonds and hydrophobic interactions with MMP-9. The mutants favor the binding affinity of MMP-9 largely. For MMP-14/APP-IP, the large steric effect of Phe204MMP-14 and the weak contributions of the polar residues Asn231MMP-14 and Thr190MMP-14 could explain why MMP-14 is non-selective for APP-IP interacting. Here, the molecular modeling methods were successfully employed to explore the selective inhibitor of MMPs, and our work gives valuable information for future rational design of selective peptide inhibitors toward individual MMP.  相似文献   

11.
A novel method for on-line determination of the amount and position of 15N-labeling in complex mixtures of amino acids is presented. Underivatized amino acids were analyzed by ion-pair chromatography in combination with mass spectrometry. This enables the direct determination of the 15N label distribution. The fragmentation pathways of the nitrogen moieties of glutamine (Gln) and asparagine (Asn) were studied in detail using all mono 15N isotopomers, which led to a method for differentiating between 15N-amide and 15N-amino labeling. The fragmentation involving the amino and amide groups of Gln led to distinct ion structures. The equivalent fragmentation pattern was not observed for Asn. Instead, the amide group of Asn was eliminated as HNCO in a secondary process. The developed analytical method was evaluated by analysis of a range of standard mixtures taking into account different levels of 15N abundance and distribution between the amino and amide groups. The detection limit (3 SD) for the presence of a 15N label was 0.7 and 1.0% for Gln and Asn, respectively. The determination of the positional labeling follows a nonlinear function. A representative example at 30% 15N was used as a benchmark resulting in average relative standard deviations of 2.7 and 15% for Gln and Asn, respectively. The corresponding expectation windows for the positional labeling were found to be 2 and 12%, respectively.  相似文献   

12.
We used high-resolution proton-detected multidimensional NMR to study the solvent-exposed parts of a seven-helical integral membrane proton pump, proteorhodopsin (PR). PR samples were prepared by growing the apoprotein on fully deuterated medium and reintroducing protons to solvent-accessible sites through exchange with protonated buffer. This preparation leads to NMR spectra with proton resolution down to ca. 0.2 ppm at fast spinning (28 kHz) in a protein back-exchanged at a level of 40%. Novel three-dimensional proton-detected chemical shift correlation spectroscopy allowed for the identification and resonance assignment of the solvent-exposed parts of the protein. Most of the observed residues are located at the membrane interface, but there are notable exceptions, particularly in helix G, where most of the residues are susceptible to H/D exchange. This helix contains Schiff base-forming Lys231, and many conserved polar residues in the extracellular half, such as Asn220, Tyr223, Asn224, Asp227, and Asn230. We proposed earlier that high mobility of the F-G loop may transiently expose a hydrophilic cavity in the extracellular half of the protein, similar to the one found in xanthorhodopsin. Solvent accessibility of helix G is in line with this hypothesis, implying that such a cavity may be a part of the proton-conducting pathway lined by this helix.  相似文献   

13.
In this paper, we present a series of heteronuclear NMR experiments for the direct observation and characterization of lysine NH3 groups in proteins. In the context of the HoxD9 homeodomain bound specifically to DNA we were able to directly observe three cross-peaks, arising from lysine NH3 groups, with 15N chemical shifts around approximately 33 ppm at pH 5.8 and 35 degrees C. Measurement of water-exchange rates and various types of 15N transverse relaxation rates for these NH3 groups, reveals that rapid water exchange dominates the 15N relaxation for antiphase coherence with respect to 1H through scalar relaxation of the second kind. As a consequence of this phenomenon, 15N line shapes of NH3 signals in a conventional 1H-15N heteronuclear single quantum coherence (HSQC) correlation experiment are much broader than those of backbone amide groups. A 2D 1H-15N correlation experiment that exclusively observes in-phase 15N transverse coherence (termed HISQC for heteronuclear in-phase single quantum coherence spectroscopy) is independent of scalar relaxation in the t(1) (15N) time domain and as a result exhibits strikingly sharper 15N line shapes and higher intensities for NH3 cross-peaks than either HSQC or heteronuclear multiple quantum coherence (HMQC) correlation experiments. Coherence transfer through the relatively small J-coupling between 15Nzeta and 13Cepsilon (4.7-5.0 Hz) can be achieved with high efficiency by maintaining in-phase 15N coherence owing to its slow relaxation. With the use of a suite of triple resonance experiments based on the same design principles as the HISQC, all the NH3 cross-peaks observed in the HISQC spectrum could be assigned to lysines that directly interact with DNA phosphate groups. Selective observation of functional NH3 groups is feasible because of hydrogen bonding or salt bridges that protect them from rapid water exchange. Finally, we consider the potential use of lysine NH3 groups as an alternative probe for larger systems as illustrated by data obtained on the 128-kDa enzyme I dimer.  相似文献   

14.
The hydration free energies of amino acid side chains are an important determinant of processes that involve partitioning between different environments, including protein folding, protein complex formation, and protein-membrane interactions. Several recent papers have shown that calculated hydration free energies for polar and aromatic residues (Trp, His, Tyr, Asn, Gln, Asp, Glu) in several common molecular dynamics force fields differ significantly from experimentally measured values. We have attempted to improve the hydration energies for these residues by modifying the partial charges of the OPLS-AA force field based on natural population analysis of density functional theory calculations. The resulting differences between calculated hydration free energies and experimental results for the seven side chain analogs are less than 0.1 kcal/mol. Simulations of the synthetic Trp-rich peptide Trpzip2 show that the new charges lead to significantly improved geometries for interacting Trp-side chains. We also investigated an off-plane charge model for aromatic rings that more closely mimics their electronic configuration. This model results in an improved free energy of hydration for Trp and a somewhat altered benzene-sodium potential of mean force with a more favorable energy for direct benzene-sodium contact.  相似文献   

15.
A new computational approach is proposed to probe the importance of residue side chains for the stability of a protein fold. Computational mutations to estimate protein stability (CMEPS) is based on the notion that the binding free energy corresponding to the complexation of a given side chain, considered as a "pseudo-ligand" of the wild type protein, reflects the importance of this side chain to the thermodynamic stability of the protein. The contribution of a particular side chain to the folding energy is estimated according to the molecular mechanics-generalized born surface area MM-GBSA approach, using a single molecular dynamics simulation trajectory of the wild type protein. CMEPS is a first principles method which does not contain any adjustable parameter that could be fitted to experimental data. The approach is first validated for Barnase and the B1 domain of protein L, for which a correlation coefficient R = 0.73, between experimental and CMEPS calculated DeltaDeltaG values, is found and then applied to the insulin monomer. In the present application, CMEPS replaces each amino acid by an alanine residue. Therefore, most mutations lead to cavities in the protein. From this the change in stability can be correlated with increased cavity volume. For insulin, this correlation is very similar compared with data previously analyzed for T4 lysozyme from an experiment for buried apolar side chains. There, the increased cavity volume has been related to the hydrophobic effect. However, since CMEPS uses the energetics in terms of electrostatic and van der Waals interactions (and not the hydrophobic effect which is difficult to relate to physical interactions), it is possible to study the effect of mutations of polar and solvent accessible side chains. According to CMEPS, residues Leu A16, Tyr A19, Leu B11, Leu B15, and Arg B22 are most important for the stability of the monomeric insulin fold. This is in agreement with experimental data. As a consequence, mutation of these residues may lead to misfolded and inactive insulin analogues.  相似文献   

16.
Mechanical damping measurements were carried out in the range of 103–105 cps and between 60°K. and the softening point on some substituted Polystyrenes and poly(vinyl benzoates) containing different substituents (methyl groups, methoxy groups, and halogen atoms) either in the ring or in the main chain. The ortho and meta ring-substituted polystyrenes do not show any secondary mechanical relaxation in the glassy state, although all the other substituted polystyrenes, exhibit a low-temperature damping peak (δ process) (which is in some way connected with ring motions) whose height and temperature location depend on nature, position, and number of substituents. Substituents in the para position of the ring or in the α position in the backbone chain shift the δ peak of the unsubstituted polystyrene towards higher temperatures; this shift is accompanied by an increase of the apparent activation energy E*. Substitution in the β position, on the contrary, does not affect the δ peak. Analogous results are obtained for substituted poly(vinyl benzoates), which exhibit, in addition, a β relaxation effect, associated with carboxyl group motions. A very good correlation is found between the values of E* and the limiting relaxation time τ for the δ relaxation of polystyrenes and poly(vinyl benzoates), similarly substituted in the ring, indicating that the δ relaxation leads to absorption curves in the mechanical relaxation spectrum which are characteristic of the structure of the aromatic side chain.  相似文献   

17.
In mass-spectrometry based peptide sequencing, formation of b- and y-type fragments by cleavage of the amide C–N bond constitutes the main dissociation pathway of protonated peptides under low-energy collision induced dissociation (CID). The structure of the b 2 fragment ion from peptides containing glutamine (Gln) and asparagine (Asn) residues is investigated here by infrared ion spectroscopy using the free electron laser FELIX. The spectra are compared with theoretical spectra calculated using density functional theory for different possible isomeric structures as well as to experimental spectra of synthesized model systems. The spectra unambiguously show that the b2-ions do not possess the common oxazolone structure, nor do they possess the alternative diketopiperazine structure. Instead, cyclic imide structures are formed through nucleophilic attack by the amide nitrogen atom of the Gln and Asn side chains. The alternative pathway involving nucleophilic attack from the side-chain amide oxygen atom leading to cyclic isoimide structures, which had been suggested by several authors, can clearly be excluded based on the present IR spectra. This mechanism is perhaps surprising as the amide oxygen atom is considered to be the better nucleophile; however, computations show that the products formed via attack by the amide nitrogen are considerably lower in energy. Hence, b2-ions with Asn or Gln in the second position form structures with a five-membered succinimide or a six-membered glutarimide ring, respectively. b2-Ions formed from peptides with Asn in the first position are spectroscopically shown to possess the classical oxazolone structure.   相似文献   

18.
It has been discussed in the literature that electron delocalization along the peptide backbone and side chain modulates the physical and chemical features of peptides and proteins. The structure and properties of peptides are determined by their charge‐density distribution, such that the modification of its side chain plays an important role on its electronic structure and physicochemical properties. Research on Entamoeba histolytica soluble factors led to the identification of the pentapeptide Met‐Gln‐Cys‐Asn‐Ser, with anti‐inflammatory in vivo and in vitro effects. A synthetic pentapeptide, Met‐Pro‐Cys‐Asn‐Ser, maintained the same anti‐inflammatory actions in experimental assays. A previous theoretical study allowed proposing the Cys‐Asn‐Ser tripeptide (CNS tripeptide) as the pharmacophore group of both molecules. This theoretical hypothesis was recently confirmed experimentally. The objective of this work was to study the influence of the electron donor and electron withdrawing substituent groups on the electronic structure and physicochemical properties of the CNS tripeptide derivatives through a theoretical study at the density functional theory level of theory. Our results in deprotonation energies showed that the relative acidity of hydrogen atom (H2) of the serine‐amide group increases with the electron withdrawing groups. This result was confirmed by means of a study of bond order. The proton affinities illustrated that the electron donor groups favored the basicity of the amino group of the cysteine amino acid. Atomic charges, Frontier molecular orbitals (HOMO–LUMO), and electrostatic potential isosurface and its geometric parameters permitted to analyze the effect that provoked the electron donor and electron attractor groups on its electronic structure and physicochemical features and to identify some reactive sites that could be associated with the anti‐inflammatory activity of tripeptide CNS derivatives. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2398–2410, 2010  相似文献   

19.
Collision-induced fragmentations of deprotonated maculatin 1 peptides provide significant sequencing information. When the peptide lacks those residues which can fragment through their alpha side chains (e.g. Thr, Ser, Glu and Gln in this study) the basic alpha and beta' backbone cleavages occur from the [Mbond;H](-) anion. When Thr, Ser, Glu and Gln are present, the ease of side-chain fragmentation of these residues is: Thr (loss of MeCHO) > Ser (CH(2)O) > Glu (H(2)O) > Gln (NH(3)). When one of more of these residues is (are) present, the alpha and beta' cleavages often occur from a fragment rather than the [Mbond;H](-) anion, e.g. for Thr, the [(Mbond;H)(-)bond;MeCHO](-) anion. These four residues also initiate gamma backbone cleavage reactions. The relative abundances of peaks resulting from gamma cleavage are Glu > Ser = Thr > Gln for maculatin 1 spectra. An unusual Gln19/Ile17 cyclisation/cleavage reaction occurs in maculatin spectra: the peptide [Mbond;H](-) anion must adopt a helical conformation in order for these two groups to interact. Analogous fragmentations have been reported previously in the negative ion spectra of the caerin 1 peptides.  相似文献   

20.
The NMR structure of the cyclic lipopeptide surfactin from Bacillus subtilis was determined in sodium dodecyl sulfate (SDS) micellar solution. The two negatively charged side chains of surfactin form a polar head opposite to most hydrophobic side chains, accounting for its amphiphilic nature and its strong surfactant properties. Disorder was observed around the fatty acid chain, and 15N relaxation studies were performed to investigate whether it originates from a dynamic phenomenon. A very large exchange contribution to transverse relaxation rate R(2) was effectively observed in this region, indicating slow conformational exchange. Temperature variation and Carr-Purcell-Meiboom-Gill (CPMG) delay variation relaxation studies provided an estimation of the apparent activation energy around 35-43 kJ x mol(-1) and an exchange rate of about 200 ms(-1) for this conformational exchange. 15N relaxation parameters were also recorded in dodecylphosphocholine (DPC) micelles and DMSO. Similar chemical exchange around the fatty acid was found in DPC but not in DMSO, which demonstrates that this phenomenon only occurs in micellar media. Consequently, it may either reflect the disorder observed in our structures determined in SDS or originate from an interaction of the lipopeptide with the detergent, which would be qualitatively similar with an anionic (SDS) or a zwitterionic (DPC) detergent. These structural and dynamics results on surfactin are the first NMR characterization of a lipopeptide incorporated in micelles. Moreover, they provide a model of surfactin determined in a more biomimetic environment than an organic solvent, which could be useful for understanding the molecular mechanism of its biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号