首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
The kinetics of cetyltrimethylammonium bromide (CTAB) stabilized silver nanoparticles have been studied spectrophotometrically at 425 nm (λmax of silver sol) in the absence and presence of water soluble polymer (poly(vinyl alcohol); PVA). Transmission electron microscopy (TEM), ultraviolet-visible spectroscopy, and viscosity measurements were used to determine the size, shape, and the size distribution of the silver nanoparticles. The reaction follows the same behavior with respect to [CTAB], [tri-sodium citrate], and [Ag+] in both the media indicating the silver nonoparticles were formed through the same reaction path. The sigmoid nature of the kinetic curves suggests an autocatalytic path in the growth of nanoparticles. The reaction rate is increased by increasing [CTAB]. The presence of PVA inhibits nucleation and retards the rate of particle growth, absorbance and size of the particles. Polymer-surfactant interactions were analyzed based on the viscosity of the reaction mixture.  相似文献   

2.
A simple, one-step approach for the synthesis of micro- and nanoparticles of silver by employing a lyotropic liquid crystal (LLC) template is described. Anisotropic silver particles are synthesised by reducing an appropriate amount of precursor silver nitrate using a mild reducing agent ascorbic acid in presence of a hexagonal LLC medium, without the aid of any external stabilising agents. In this synthesis, precursor concentration, type of the reducing agent and LLC phase are found to significantly influence the particle size and morphology. Either a decrease in the concentration of silver nitrate or a change in the reducing agent, from ascorbic acid to sodium borohydride in the same reaction medium, yielded quasi-spherical nanoparticles. Besides, replacing the hexagonal LLC medium with a lamellar phase during the synthesis using ascorbic acid also resulted in the formation of spherical particles in nanometre scale. As a comparison, gold nanoparticle synthesis is carried out in hexagonal and lamellar LLC phases. Similar to the observations made in the silver particle synthesis, branched anisotropic particles are formed in the hexagonal phase and quasi-spherical particles are produced in the lamellar phase. A possible growth mechanism for the formation of these particles based on the phase structure of the LLC medium is discussed.  相似文献   

3.
The kinetics and mechanism of the formation of silver nanoparticles by reduction of Ag+ with maltose were studied spectrophotometrically by monitoring the absorbance change at 412 nm in aqueous and micellar media at a temperature range 45–60 °C. The reaction was carried out under pseudo-first-order conditions by taking the [maltose] (>tenfold) the [Ag+]. A mechanism of the reaction between silver ion and maltose is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law. The effect of surfactants, namely cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic surfactant), on the reaction rate has been studied. The enthalpy and the entropy of the activation were calculated using the transition state theory equation. The particle size of silver sols was characterized by transmission electron microscopy and some physiochemical and spectroscopic tools.  相似文献   

4.
In this paper we report the effect of poly(vinyl alcohol) (PVA) on the silver nanoparticles formation of different morphologies by using silver nitrate and citric acid as the oxidant and reductant, respectively, for the first time. Our transmission electron microscopy (TEM) results suggest that the presence of PVA has significant impact on the size, shape, and the size distribution of the silver nanoparticles. The reaction follows a zero-order kinetics in [citric acid] as well as in [silver(I)] in the absence and presence of PVA. It was found that PVA and cetyltrimethylammonium bromide (CTAB) concentrations show no significant effects on the rate of CTAB-stabilized silver nanoparticles formation, whereas in presence of PVA, the reaction rate increases with (CTAB). Both spectrophotometric and TEM measurement demonstrated that the orange silver sol consists of aggregates, whereas the purple sol does not contain the aggregated arrangement. On the basis of various observations, the most plausible mechanism has been envisaged.  相似文献   

5.
Silver nanoparticles were prepared by the reduction of AgNO(3) with aniline in dilute aqueous solutions containing cetyltrimethlyammonium bromide, CTAB. Nanoparticles growth was assessed by UV-vis spectroscopy and the average particle size and the size distribution were determined from transmission electron microscopy, TEM. As the reaction proceeds, a typical plasmon absorption band at 390-450nm appears for the silver nanoparticles and the intensities increase with the time. Effects of [aniline], [CTAB] and [Ag(+)] on the particle formation rate were analyzed. The apparent rate constants for the formation of silver nanoparticles first increased until it reached a maximum then decreased with [aniline]. TEM photographs indicate that the silver sol consist of well dispersed agglomerates of spherical shape nanoparticles with particle size range from 10 to 30nm. Aniline concentrations have no significant effect on the shape, size and the size distribution of Ag-nanoparticles. Aniline acts as a reducing as well as adsorbing agent in the preparation of roughly spherical, agglomerated and face-centered-cubic silver nanoparticles.  相似文献   

6.
A non-toxic route was used for the preparation of silver nanoparticles using tryptophan (Trp) as reducing/stabilizing agent in the presence of cetyltrimethyl ammonium bromide (CTAB). Role of water soluble neutral polymer poly(vinylpyrrolidone) (PVP) has been studied on the growth of yellow colour silver nanoparticle formation. The synthesized nanostructures were characterized by UV–Visible absorption spectroscopy, transmission electron microscopy (TEM) by observing the size and distribution of silver nanoparticles. As the reaction proceeded, particles grew up to about 10 and 20 nm in the presence and absence of PVP, respectively, as determined by TEM. The formed nanoparticles showed the highest absorption plasmon band at 425 nm. Rate of silver sol formation increases with the [Trp], [CTAB] and [PVP], reaching a limiting value and then decreases with the increase in concentrations of these reagents. It was observed that nanoparticles are spherical, aggregated and poly dispersed in the absence and presence of PVP, respectively. On the basis of kinetic data, a suitable mechanism is proposed and discussed for the silver sol formation.  相似文献   

7.
In recent years, much effort has been made to produce gold (Au) nanorods of different sizes through the use of binary surfactant mixtures via a seed-mediated growth approach. However, how the ratio of two different surfactants influences the shape of the resulting Au nanoparticles remains to be elucidated. Here, we report the shape-controlled synthesis of Au nanoparticles using a binary surfactant mixture of CTAB (cetyltrimethylammonium bromide) and DDAB (didodecyldimethylammonium bromide) via a silver-assisted seed-mediated growth approach. Decreasing the CTAB/DDAB ratio results in a shape transition from Au nanorods to elongated tetrahexahedra and finally to Au bipyramids. The results showed significant improvement in the yield of Au bipyramidal type nanoparticles in different sizes (nm to μm) by using binary surfactant mixtures without any need for shape selection procedure. By varying the pH and concentration of ascorbic acid, we can control the shape and size of Au nanoparticles (i.e., truncated bipyramids, dogbones, and nanodumbbells) at fixed CTAB/DDAB ratios. A preliminary growth mechanism has been proposed based on the change in the mixed micelle soft-template induced by the increasing concentration of DDAB and reaction parameters (i.e., pH, concentration of ascorbic acid). These results constitute the advances in the understanding for synthesizing anisotropic Au nanoparticles of tunable optical properties via engineering the design of a soft-template. These anisotropic Au nanoparticles, especially, bipyramids of different morphologies and sizes are potential candidates for the enhancement of the optical response and developing label-free biosensing devices.  相似文献   

8.
Spectrophotometric, kinetic, and transmission electron microscopic (TEM) data for the formation of Ag-nanoparticles using aspartic acid (Asp) as reductant are reported for the first time. In the formation of transparent silver sols, an alkaline medium is required. The silver nanoparticles are spherical, uniform particle size, and strongly depend on the [Asp]. The apparent rate constant decreases with [Asp] (from 4.0 to 24.0×10(-4)moldm(-3), the rate constants decreased from 2.6×10(-4) to 0.3×10(-4)s(-1)). For a certain reaction time, i.e., 30min, the absorbance of the silver sol first increased until it reached a maximum, and then decreased with [Asp]. Kinetic and TEM results indicate that the size of the Ag-nanoparticles depends on the [Asp]. It is proposed that the oxidation of Asp occurs by the adsorbed Ag(+) ions on the surface of Ag(2)O particles.  相似文献   

9.
The title reaction in the presence of cetyltrimethylammonium bromide (CTAB) has been followed spectrophotometrically at 325 nm. In the process of reduction, characteristic surface resonance plasmon absorption peaks appear for the silver nanoparticles (NP) and the intensities increase with reaction time. UV–visible spectra suggest that [CTAB] and glutamic acid influence the morphology of the silver NP and act as shape‐directing agents, whereas [Ag+] has no effect. The effects of the total [glutamic acid], [CTAB], and [Ag+] on the apparent rate constants of silver NP formation are determined. The sigmoidal curve of absorbance versus reaction time indicates an autocatalytic path involved in the growth process. The α‐amino and ? COOH groups undergo chemical transformation (oxidative deamination and decarboxylation). The particles are spherical in shape with average diameters ranging between 12 and 25 nm, and their size distribution is wide. A plausible mechanism has been proposed with the following rate law: (d[silver sol])/dt = k[Ag+][Glutamic acid]T. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 680–691, 2012  相似文献   

10.
Carboxyl and amino-functionalized polystyrene latex particles were synthesized by the miniemulsion copolymerization of styrene and acrylic acid or 2-aminoethyl methacrylate hydrochloride (AEMH). The reaction was started by using an oil-soluble initiator, such as 2,2'-azobis(2-methylbutyronitrile) (V-59). The effect of the functional monomer content and type of surfactant (non-ionic versus ionic) on the particle size and particle size distribution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). A bimodal particle size distribution was observed for functionalized latex particles prepared in the presence of the non-ionic surfactant (i.e., Lutensol AT-50) when 1 wt % of acrylic acid or 3 wt % of AEMH as a comonomer was employed. The copolymer particle nucleation was studied by using a highly hydrophobic fluorescent dye. From the obtained results, the formation of bimodal particle size distribution may be attributed to a budding-like effect, which takes place during the earlier stage of polymerization and is caused by the additional stabilizing energy originated from the ionic groups of a functional polymer. The reaction mechanism of particle formation in the presence of non-ionic and ionic surfactants has been proposed. The amount of the surface functional groups was determined from polyelectrolyte titration data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号