首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.

For the efficient synthesis of transition-metal cobalt oxide nanoparticles (Co3O4 NPs) without using any costly and toxic solvent or complicated equipment, the co-precipitation method was used in this work. Using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV–Vis spectrophotometry, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), the prepared Co3O4 NPs were characterized and identified. The influence of prepared Co3O4 NPs on the developmental synthesis of some selenopyridine/quinoline derivatives under different microwave irradiation powers and irradiation times was investigated via click (reaction) chemistry. The reusable Co3O4 nanoparticles have high catalytic activity under microwave irradiation for the synthesis of organoselenium compounds with higher yields (>?90%), milder reaction conditions and shorter time without significantly decreasing the reaction rates and yields.

  相似文献   

2.
Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs synthesis using Rubus fairholmianus root extract (RE) as an efficient reducing agent. The UV spectrum of RE-ZnO NPs exhibited a peak at 357 nm due to intrinsic bandgap absorption and an XRD pattern that matches the ZnO crystal structure (JCPDS card no: 36-1451). The average particle size calculated from the Debye–Scherrer equation is 11.34 nm. SEM analysis showed that the RE-ZnO NPs spherical in shape with clusters (1–100 nm). The antibacterial activity of the NPs was tested against Staphylococcus aureus using agar well diffusion, minimum inhibitory concentration, and bacterial growth assay. The R. fairholmianus phytochemicals facilitate the synthesis of stable ZnO NPs and showed antibacterial activity.  相似文献   

3.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   

4.
Nowadays, the industrial wastewater pollutants including toxic dyes and pathogenic microbes have caused serious environmental contaminations and human health problems. In the present study, eco-friendly and facile green synthesis of Ag modified ZnO nanoparticles (ZnO-Ag NPs) using Crataegus monogyna (C. monogyna) extract (ZnO-Ag@CME NPs) is reported. The morphology and structure of the as-biosynthesized product were characterized by field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), differential reflectance spectroscopy (DRS), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) techniques. TEM and FESEM images confirmed the oval and spherical-like structure of the products with a size of 55–70 nm. The EDS analysis confirmed the presence of Zn, Ag, and O elements in the biosynthesized product. The photocatalytic results showed ZnO-Ag@CME NPs were degraded (89.8% and 75.3%) and (94.2% and 84.7%) of methyl orange (MO) and basic violet 10 (BV10), under UV and sunlight irradiations, respectively. The Ag modified ZnO nanoparticles exhibited enhanced catalytic activity towards organic pollutants, and showed better performance than the pure ZnO nanoparticles under UV and sunlight irradiations. This performance was probably due to the presence of silver nanoparticles as a plasmonic material. Antibacterial activity was performed against different bacteria. ZnO-Ag@CME NPs showed high antibacterial activity against K. pneumoniae, S. typhimurium, P. vulgaris, S. mitis, and S. faecalis with MIC values of 50, 12.5, 12.5, 12.5, and 12.45 µg/mL, respectively. All in all, the present investigation suggests a promising method to achieve high-efficiency antibacterial and catalytic performance.  相似文献   

5.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   

6.
The stabilization of defects in ZnO at high temperatures has been investigated. The properties of unmodified and modified ZnO nanoparticles (NPs) with 2 at.% of Ag prepared by microwave assisted combustion method, have been systematically studied using X-ray diffraction (XRD), photoluminescence (PL), X-ray photoelectron spectroscopy (XPS) and photocatalytic activity measurements. Though the XRD data shows a marginal shift in the ZnO peak position upon Ag addition, the amount of shift does not change with annealing temperatures. The PL data reveals that the defect mediated visible emission intensity of unmodified ZnO NPs increases with increase in the annealing temperature, whereas it remains almost unchanged in Ag-ZnO. This study clearly establishes that silver is an efficient stabilizer of intrinsic defects in ZnO at high temperatures. This is further supported by the core and valence band XPS spectra.  相似文献   

7.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

8.
In the present investigation novel Polyimide/functionalized ZnO (PI/ZnO) bionanocomposites containing amino acid (Methionine) and benzimidazole pendent groups with different amounts of modified ZnO nanoparticles (ZnO NPs) were successfully prepared through ultrasonic irradiation technique. Due to the high surface energy and tendency for agglomeration, the surface ZnO NPs was modified by a coupling agent as 3- methacryloxypropyl-trimethoxysilane (MPS) to form MPS-ZnO nanoparticles. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. PI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. The TGA results of PI/ZnO nanocomposites showed that the thermal stability is obviously improved the presence of MPS-ZnO NPs in comparison with the pure PI and that this increase is higher when the NP content increases. The permeabilities of pure H2, CH4, O2, and N2 gases through prepared membranes were determined at room temperature (25 °C) and 20 bar feed pressure. The membranes having 20% ZnO showed higher values of H2 permeability, and H2/CH4 and H2/N2 ideal selectivities (the ratio of pair gas permeabilities) compared with other membranes. The antibacterial activity of bionanocomposite films was tested against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Further, it was observed that antibacterial activity of the resulting hybrid biofilms showed somewhat higher for gram-positive bacteria compared to gram-negative bacteria.  相似文献   

9.
Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scalably synthesized via the simple reaction of Zn powder with H_2O vapor in autoclave.The structural,morphological and optical properties of the samples were systematically characterized by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectra,transmission electron microscopy,Micro-Raman,photoluminescence,and ultraviolet-visible spectroscopy.The as-prepared Zn O NPs are composed of nanoparticles with 100–150 nm in diameter,and have a small Brunauer-Emmett-Teller surface area of 6.85 m~2/g.The formation of Zn O nanoparticles is relative to the peeling of H_2 release.Furthermore,the product has big strain-stress leading to the red-shift in the band gap of product,and shows a strong green emission centered at 515 nm revealing enough atomic defects in Zn O NPs.As a comparison with P25,the obtained dust gray Zn O NPs have a strong absorbance in the region of 200–700 nm,suggesting the wide wave-band utilization in sunlight.Based on the traits above,the Zn O NPs show excellent photocatalytic activity on the degradation of rhodamine B(Rh-B)under solar light irradiation,close to that under UV irradiation.Importantly,the Zn O NPs could be well recycled in water due to the quick sedimentation in themselves in solution.The low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O NPs endow themselves with promising application in purifying wastewater.  相似文献   

10.
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO–rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO–rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO–rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO–rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2-saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core–shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.  相似文献   

11.
In this study, titanium dioxide nanoparticles (NPs) were synthesized using the home microwave method, and the effect of the microwave irradiation time on the structure of NPs was investigated. In addition, the morphological effect of these NPs on the toxicity of HDMSCs cells was investigated. The crystalline structure and morphology of the NPs were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM); the cytotoxicity was determined by the methyl thiazolyl tetrazolium (MTT) assay. X-ray diffraction analysis revealed that all thin films had a polycrystalline nature with an anatase phase of TiO2. It was also found that the crystallite size increased with increasing microwave radiation time. The FTIR spectrum showed Ti-O-Ti properties by the peak in the range between 527 and 580 cm?1. Further, the FE-SEM images showed that the grain size increased with increasing irradiation time. The MTT assay results showed that the accumulation of NPs leads to toxicity.  相似文献   

12.
ZnO nanoparticles(NPs)with different contents of Ag dopants were obtained by one-step solvothermal method.The crystalline structures of the prepared composites were characterized by means of X-ray diffraction(XRD).The morphology and composition of the samples were studied by means of scanning transmission electron microscopy(TEM)5 X-ray photoelectron spectroscopy(XPS)and electron microscopy(SEM).Photoluminescence(PL)spectra have been used to investigate pure ZnO,Ag-ZnO and Ag-ZnO-PVP NPs to determine the effect of composition on PL properties.It was found that the Ag-ZnO samples showed stronger emissions than pure ZnO.The catalytic activity of samples was measured by the degradation rate of R6G,which exhibited that Ag-ZnO nanocomposite demonstrated enhanced photocatalytic activity compared to the pure ZnO NPs.The possible influence factors to the photocatalytic and antibacterial activities of the sample were explored,including Ag contents and dispersion.It was presented that the photocatalytic activity of Ag-ZnO-PVP was better than that of Ag-ZnO and it showed the highest photocatalytic activity with 7%of Ag content.The Ag-ZnO-PVP can kill the Escherichia coli(E.coli)cells.  相似文献   

13.
《印度化学会志》2021,98(11):100197
Herein we report an eco-friendly and cost efficient synthesis of Fe doped ZnO (TPFZO) nanoparticles using the extract of Thespesia polpulanea flowers as a stabilizing agent. The synthesized NPs have been characterized by XRD, FT-IR, UV-DRS, SEM, EDAX and TEM studies. The synthesized NPs were found to have the crystallite size in the range of 30–60 ​nm. The calculated band gap energies for ZO and TPFZO nanoparticles were 3.00 ​eV and 1.97 ​eV respectively. The size distribution of the ZO and TPFZO obtained from TEM were observed to be lying in the range 50–120 ​nm and 4–22 ​nm respectively. The interaction of TPFZO NPs with bovine serum albumin (BSA) has been studied using fluorescence and absorption titration methods. The results indicated that the nanoparticles quenched the BSA fluorescence at 340 ​nm via static quenching mode having a bimolecular quenching rate constant value of 6.21 ​× ​1013 Lmol−1s−1.  相似文献   

14.
《印度化学会志》2023,100(2):100917
The aim of this study was to examine the environmentally friendly green production of zinc oxide nanoparticles (ZnO NPs) utilizing Oldenlandia Umbellata (OU) leaves extract, as well as to study the photo catalytic and biological activities of these particles. XRD, UV-Visible, FT-IR, SEM, EDAX, TEM and Zeta potential studies were used to investigate the purity and properties of as synthesized ZnO NPs. From the FT-IR investigations presenting functional groups were verified. The hexagonal form and wurtzite crystal nature were confirmed by SEM and XRD photographs. The decreasing zeta potential of ?23.7 mV suggested the stability of OU-ZnO NPs, which was validated by Zeta potential and EDAX measurements. The OU-ZnO NPs' photo catalytic activity was also examined using their methylene red dye degradation potential. It also has a DPPH test that revealed it had a 66% radical scavenging activity. Furthermore, this substance was proven to be an effective anti-fungal agent against Candida albicans, which demonstrated a maximum mycelial inhibition of 12.5 ± 0.7. Additionally, the biosynthesized nanoparticles had high antibacterial activity verses all of the microbiological strains tested to varying degrees.  相似文献   

15.
In this study, the copper sulfide nanoparticles (CuS‐NPs) and the zinc oxide/zinc hydroxide nanoparticles ((ZnO/Zn(OH)2‐NPs) were synthesized by a simple and low‐cost method, and the synthesized nanoparticles were characterized and identified by UV–Vis, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The antimicrobial activity of the CuS‐NPs and the ZnO/Zn(OH)2‐NPs were examined by broth dilution to determine the minimal inhibitory concentration (MIC) of antibacterial agent required to inhibit the growth of a pathogen and the minimum bactericidal concentration (MBC) required to kill a particular bacterium. Agar disc diffusion method was used to determine the zone of inhibition. The nanoparticles demonstrated potent antibacterial activity against Klebsiella pneumonia (ATCC 1827), Acinetobacter baumannii (ATCC 150504), Escherichia coli (ATCC 33218) and Staphylococcus aureus (ATCC 25293). Antifungal activity against Aspergillus oryzae (PTCC 5164) was also obtained. The data obtained from antimicrobial activities by broth dilution and agar disc diffusion methods exhibited the CuS‐NPs were more effective than the ZnO/Zn(OH)2‐NPs. A good correlation was observed between the data obtained by both methods.  相似文献   

16.
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from −49.8 mV to −56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from −66.0 up to −88.6 mM.  相似文献   

17.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   

18.
《先进技术聚合物》2018,29(6):1834-1842
Fabrication, characterization, and properties of novel poly(benzimidazole‐amide)/functionalized ZnO nanocomposites (PBIA/APS‐ZnO NCs) were investigated. At first, an aromatic PBA containing 3 imidazole units per repeat unit was synthesized by direct polycondensation of 1,3‐bis(5‐carboxylic acid‐2‐benzimidazole)benzene (BCAB) with 5‐(2‐benzimidazole)‐1,3‐phenylenediamine (DAMI) with good yield as a polymeric matrix. The periphery of zinc oxide nanoparticles (ZnO NPs) was modified with 3‐aminopropyltriethoxysilane (APS) to have a better dispersion NPs and enhancing interactions between nanoparticles and PBIA matrix. Different percentages of functionalized NPs (0, 4, 8, and 12 wt.%) were then embedded in PBA matrix through ultrasonic irradiation technique. Fourier transform infrared and thermo‐gravimetric analysis (TGA) confirmed that APS was successfully attached on the ZnO NP surface. The obtained NCs were characterized by means of Fourier transform infrared, X‐ray diffraction, scanning electron microscopy, and TGA. The TGA of the PBIA/APS‐ZnO NCs showed the enhancement in the thermal stability in comparison with the neat PBIA and that this increase is higher when the NP content increases. Scanning electron microscopy analyses of NCs revealed that the dispersion of APS‐ZnO NPs was uniformly done in the PBIA matrix.  相似文献   

19.
《印度化学会志》2022,99(11):100744
ZnO nanoparticles are one of the prominent photocatalysts for environmental applications due to its high redox ability, nontoxic and higher stability. This report explains the synthesis of ZnO nanoparticles by a simple solution combustion method using zinc nitrate hexahydrate as an oxidizing agent and incense stick powder as fuel at 400 °C. Several techniques were adopted for the characterization of the obtained product. X-ray diffraction (XRD) pattern shows that a lower concentration of fuel gives pure ZnO and a higher concentration of fuel results in calcium doped ZnO with a cubic phase having a crystallite size of 32–28 nm. UV–vis spectrum shows that as the fuel concentration increases, band gap decreases and reaches to 3.33 eV for 3 g of fuel. Spongy networks with many pores wereobserved in the scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed the average particle size of Ca doped ZnO NPs is about 20 nm. Pure and Ca doped ZnO nanoparticles were examined for photocatalytic degradation of methylene blue (MB) dye under UV light irradiation. The results prove that Ca doped ZnO nanoparticles show good photocatalytic activity.  相似文献   

20.
Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave‐assisted thermal decomposition procedure has been developed by which monodisperse Fe3O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as‐synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave‐heating experiments, Raman spectroscopy and vector‐network analysis, indicating that the initially formed magnetic Fe3O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号