首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
研究了含偕胺肟基螯合纤维对Au^3 的吸附特征及影响吸附量的因素,结果表明,含偕胺肟基螯合纤维对Au^3 的吸附是极高,而且将所吸附的Au^3+还原成单质金;在含Au^3 ,Cu^2 ,Zn^2 和Cr^3 的溶液中,对Au^3 具有相当高的吸附选择性,提高偕胺肟基在螯合纤维中的含量及吸附温度和Au^3 的初始度等均有利于提高吸附量。  相似文献   

2.
用地衣形芽孢杆菌 ( Bacillus licheniformis) R0 8菌体还原、制备高分散度负载型钯催化剂。透射电镜观察表明 ,R0 8菌体能够吸附还原 Pd2 成 Pd0 颗粒。IR谱分析发现 ,细胞壁上的 - COO- 和 - HPO42 - 基团可能与菌体吸附 Pd2 的过程有关。XPS测定结果表明 ,在载体 γ- Al2 O3上的 Pd2 离子被 R0 8菌体还原成 Pd0。所形成的 Pd0 γ- Al2 O3催化剂经加热处理后 ,载体 γ- Al2 O3上的 Pd0 颗粒高度分散 ,其平均粒径为 5nm。该催化剂能够高效地催化一氧化碳的氧化反应。  相似文献   

3.
我们曾经研究了地衣芽孢杆菌R08和啤酒酵母废菌体吸附Pd2+以及巨大芽孢杆菌D01吸附Au3+过程的作用机理。有关乳酸杆菌A09吸附Ag+1的作用特点已有报道。本文在此基础上,进一步用谱学技术研究A09菌体吸附还原Ag+的作用机理。  相似文献   

4.
啤酒酵母废菌体吸附Pd2+的物理化学特性   总被引:8,自引:0,他引:8  
以啤酒酿造厂的啤酒酵母废菌体为生物吸附剂,研究死的啤酒酵母菌体从PdCl2溶液中吸附Pd2+的物理化学特性.结果表明,该菌体吸附Pd2+受吸附时间、溶液pH值、菌体浓度和Pd2+起始浓度等因素的影响.菌体吸附Pd2+是个快速的过程,吸附45min时吸附量达最大,但在最初的3min内,吸附量可达到最大吸附量的92%.在5~60℃范围内,吸附作用不受温度影响.吸附作用的最适pH值为3.5.在Pd2+起始质量浓度为30~300mg/L范围内和菌体质量浓度为2g/L的条件下,菌体对Pd2+的吸附作用符合Langmuir和Freundlich等温吸附模型.在pH=3.5,Pd2+与菌体质量比为0.2和30℃条件下吸附60min,吸附量达94.5mg/g.从废钯催化剂处理液回收钯,吸附量为32.2mg/g.XPS分析表明,该菌体能吸附水溶液中的Pd2+.TEM结果表明,在无外加电子供体时,死的啤酒酵母废菌体能够吸附和还原溶液中的Pd2+成Pd0微粒,Pd0微粒可进一步形成有一定形状的钯晶粒;该菌体还能使吸附在γ-Al2O3上的Pd2+还原成Pd0.  相似文献   

5.
将葡萄糖氧化酶固定于羟基磷灰石(HAp)-Nation复合膜,构建了高灵敏、高选择性的葡萄糖传感器.羟基磷灰石和Nation良好的协同作用,可以有效地提高传感器的稳定性与灵敏度.实验结果表明:固定在复合膜修饰电极上的葡萄糖氧化酶呈现出一对较好的近乎可逆的氧化还原峰,并且对葡萄糖的氧化有良好的催化作用,同时消耗溶解氧,从而导致溶解氧还原峰的降低.在-0.8V处,随葡萄糖浓度的增加,葡萄糖氧化酶催化葡萄糖氧化时消耗溶解氧的量增加,溶解氧还原电流逐渐降低,因此该修饰电极可以作为葡萄糖传感器实现对葡萄糖的高灵敏检测.在0.12~2.16mmol·L^-1浓度范围内,溶解氧还原电流的降低与葡萄糖的浓度成正比,据此可以测定出溶液中葡萄糖的浓度,该传感器的检出限和灵敏度分别为0.02mmol·L^-1(SIN=3)和6.75mA·mol·L^-1.因此,HAp-Nation复合膜为酶的固定和直接电化学研究提供了一个新的有效平台,在构建新型无试剂葡萄糖传感器方面具有较大的应用前景.  相似文献   

6.
细菌吸附还原贵金属离子特性及表征   总被引:10,自引:0,他引:10  
提炼、富集贵金属是细菌固定金属的重要用途.部分细菌还可还原金属离子,如海藻、枯草杆菌等均有较强的吸附、还原AU3+等金属离子的能力[1~3].本文研究了从生态环境中筛选的几种细菌及其吸附、还原Pd2+、Pt4+、Au3+、Ag+、Rh3+等贵金属离子的特性,以期了解细菌固定金属的作用机制,提高细菌的还原能力,并将所得结果用于回收贵金属和制备高分散度贵金属催化剂.1实验部分D01细菌从生态环境中筛选、培养,并按常规微生物法制备大量菌体.所用仪器为SCR20BC高速冷冻离心机,BairdPS-4电感耦合等离子原子发射光谱仪,740SXFTIR光…  相似文献   

7.
以D-葡萄糖为原料,经碳苷化反应,酰化反应和脯氨酸-DIPEA催化的aldol反应制得2个碳苷糖[1-(4'-羟基苯基)-4-C-β-四乙酰基葡萄糖基-3-烯-2-酮(5a)和1-(3-羟基苯基)-4-C-β-四乙酰基葡萄糖基-3-烯-2-酮(5b)];5与琥珀酸维生素D2经Steglich酯化反应合成了2个新型碳苷糖类维生素D2衍生物,其结构经1H NMR,13C NMR和HR-ESI-MS表征。  相似文献   

8.
利用铜离子引发体系, 制备出核层为聚甲基丙烯酸甲酯(PMMA)壳层为牛血清白蛋白(BSA)的PMMA-BSA核壳纳米粒子. 通过透射电子显微镜(TEM)表征, 直接观察到PMMA-BSA纳米粒子的核壳结构.结合X射线光电子能谱(XPS)测试, 分析PMMA-BSA纳米粒子的表面成分, 证明PMMA-BSA纳米粒子的壳层是BSA. 利用带耗散的石英晶体微天平(QCM-D)研究了PMMA-BSA纳米粒子在金片表面的吸附行为. 频率的迅速下降, 耗散因子的快速上升, 说明PMMA-BSA粒子快速地吸附到金片表面. 利用磷酸盐缓冲液反复冲洗时, 频率和耗散没有变化, 表明PMMA-BSA 纳米粒子在金片上吸附较牢固. 以金电极为基底电极, 吸附PMMA-BSA纳米粒子后, 利用戊二醛修饰粒子壳层, 再通过氨基与醛基的反应来固定葡萄糖氧化酶, 制备出电流型葡萄糖传感器. 电化学测试表明该传感器对葡萄糖具有良好的电流响应, 在0.3 V的工作电位下, 响应电流与葡萄糖浓度在0.20-5.85 mmol·L-1范围内呈现出较好的线性关系, 相关系数为0.989. 传感器的灵敏度高达28.6 μA·L·mmol-1·cm-2, 响应时间仅为11 s. 传感器还具有良好的稳定性, 在25℃下储存30 d, 响应电流仅下降了16%.  相似文献   

9.
嗜铅菌对水中重金属Pb~(2+)的吸附研究   总被引:3,自引:0,他引:3  
研究了实验室提供的嗜铅菌对水中铅离子吸附的条件和机理.讨论了吸附时间、pH、铅离子的质量浓度和菌的质量浓度对吸附的影响.结果表明,在pH=7.0、铅离子初始质量浓度为25mg/L、离心湿菌的质量浓度为1.06g/L、吸附时间为60min时,铅离子的吸附率达96.88%;实验条件下超标25倍的含Pb~(2+)废水,可迭排放标准;Pb~(2+)的最大吸附量为150mg/g.数学模型Langmuir和Freundlich方程均能很好地描述嗜铅菌对Pb~(2+)的吸附过程.对Pb~(2+)吸附前后的红外光谱表征表明,嗜铅菌表面多糖、蛋白质的羟基峰和羰基峰均有不同程度的紫移,羟基峰、糖苷峰等峰宽略增,说明菌体吸附,主要是表面基团的作用所致.用原子力显微镜对吸附前后的嗜铅菌检测可见,吸附后菌体的弹性变小、粘性变大、部分茵体有一定的收缩,说明以表面吸附为主的吸附过程,对菌细胞的聚合度有影响,菌体内部对铅也有一定的生物积累.  相似文献   

10.
高碘酸钠氧化法测定羟丙基瓜尔胶上仲羟基取代度   总被引:1,自引:0,他引:1  
高碘酸钠氧化可以使邻羟基C-C键发生高选择性断裂, 同时产生两分子醛基. 在pH=4.3及25 ℃的条件下, 对瓜尔胶及其衍生物羟丙基瓜尔胶进行高碘酸钠氧化, 采用红外光谱与核磁共振谱对氧化产物结构进行了表征. 结果表明, 氧化后的瓜尔胶和及羟丙基瓜尔胶结构中醛基主要以半缩醛的形式存在. 通过测定高碘酸钠的消耗量得到不同摩尔取代度羟丙基瓜尔胶糖单元上邻羟基的含量, 结合概率分析方法, 确定摩尔取代度分别为0.04, 0.14, 0.36, 0.51, 0.78, 1.05和1.53的羟丙基瓜尔胶在仲羟基上取代度分别为0.02, 0.09, 0.18, 0.30, 0.46, 0.59和1.03, 与其它方法得到的结果一致.  相似文献   

11.
Some spectroscopic characteristics of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae have been reported in this paper. The effect of temperature on the correlation parameters of chemical kinetics and thermodynamics of the binding reaction was investigated by using AAS. XRD diffraction pattern of gold-loaded biomass revealed that the Au3+ bound on the cell wall of the biomass had been reduced into gold particle. FTIR spectrophotometry on blank and gold-loaded biomass demonstrated that active groups such as the hydroxyl group of saccharides, and the carboxylate anion of amino-acid residues, from the peptidoglycan layer on the cell wall seem to be the sites for the Au3+ binding, and the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides on the peptidoglycan layer, serving as the electron donor, in situ reduced the Au3+ to Au0. XPS and IR characterizations of the interaction between glucose and Au3+ further supported that the reduction of Au3+ to Au0 can directly occur at the aldehyde group of the reducing sugars.  相似文献   

12.
The mechanism of Ag(+) biosorption by resting cell of Lactobacillus sp. strain A09 has been further investigated at the molecular level using spectroscopic techniques. The values of estimated equilibrium constants, rate constants, half-life periods and apparent enthalpies of the binding reaction were calculated via the determination of Ag(+) adsorbed by the biomass using atomic absorption spectrophotometry (AAS). The reductive ratio of the Ag(+) to Ag(0) by the A09 biomass was examined by X-ray photoelectron spectroscopy (XPS). Analysis for sulfur and nitrogen atomic contents in dry powder of the biomass with EA-1110 elemental analysis (EA) showed that amino acid residues retaining the reductive property of Ag(+) to Ag(0) are very small quantity, whereas glucose content in the hydrolysates of the biomass analyzed by ultraviolet-visible spectrophotometry (UV-vis) indicated that the amount of reducing sugars in the biomass is much larger than 2.71%. The fourier transform infrared (FTIR) spectrophotometry on blank and silver-loaded biomass demonstrated that the chemical functional group such as the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides from the cell wall plays a leading role in serving as the electron donor for reducing the Ag(+) to Ag(0). This result was further supported by characterizations on the interaction of the Ag(+) with glucose using X-ray powder diffractometry (XRD) and FTIR spectroscopy.  相似文献   

13.
贵金属离子非酶法生物还原机理初探   总被引:5,自引:0,他引:5  
在微生物湿法冶金回收贵金属的研究工作中,掌握金属非酶法生物还原的作用过程及本质是优化浸出工艺条件,设计高效,经济的生物加收技术的关键,因此有关细菌固定金属的作用机制的研究一直为人们所关注,冻干的海藻(Chlorella vulgaris)和四氯金(Ⅲ)酸盐[AuCl4]-相互作用,Au3+快速被还原为Au ,继而缓慢地被还原成Au[1],厌氧的脱硫弧菌属(Desulfovibrio desulfuricans)的休止细胞能将溶液中的钯离子还原为金属钯,用丙酮酸钠,甲酸钠或氢气作为电子供体[2],我们试图从失活细菌与金属离子的界面出发,利用谱学技术,考察细菌与金属离子之间的相互作用本质,为开发利用生物体作为吸附剂进行废水处理,回收贵重或有害金属以及制备高分散度负载型金属催化剂[3]提供理论依据。  相似文献   

14.
Previous studies have shown that hop biomass is capable of adsorbing significant amounts of Au(III) from aqueous solutions. Hop biomass was chemically modified to determine the contributions that the different functional groups on the biomass have on the binding and reduction of Au(III). Previously, performed batch studies showed that Au(III) binding is fast, occurring within the first 5 min of contact and in a pH dependent manner. However, esterified hop biomass behaved in a pH independent manner and the binding was found not to change with changing pH. However, the hydrolyzed biomass had a similar Au(III) binding to the native hops biomass, showing a pH dependent binding trend. X-ray absorption spectroscopy (XAS) analysis, XANES (X-ray absorption near edge structure), and EXAFS (extended X-ray absorption fine structure) were used to determine the oxidation state, coordination environment, and the average radii of the gold nanoparticles bound to the hops biomass. The XAS data confirmed the presence of Au(0) in both the native and chemically modified hop biomasses. XANES fittings show that the Au(III) was reduced to Au(0) by approximately 81%, 70%, and 83% on the native, esterified, and hydrolyzed hop biomass, respectively. In addition, the calculation of the particle radius was also in agreement with the results of previously performed transmission electron microscopy studies. The average particle could only be calculated for the native and esterified hops biomass, which showed average particle radii of 17.3 Å and 9.2 Å, respectively.  相似文献   

15.
A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into carboxylic acid while alcoholic hydroxyl group stays intact in selective oxidation of 4-(hydroxymethyl)-benzaldehyde. The heterogeneous catalysis system is composed of soluble catalysts and insoluble substrate. The gold catalyst is prepared, preserved and applied for catalytic oxidation all in water. After reaction conditions are optimized, H\begin{document}$_2$\end{document}O\begin{document}$_2$\end{document} is found to be the best oxidizing agent with complete conversion. Besides, the gold catalyst displays good versitility for aldehyde derivatives. After reaction completes, organic components are extracted by organic solvent and gold NPs in water are separated and recycled.  相似文献   

16.
A facile green biosynthesis method has been successfully developed to prepare gold nanoparticles (AuNPs) of various core sizes (25 ± 7 nm) using a natural biomaterial, eggshell membrane (ESM) at ambient conditions. In situ synthesis of AuNPs-immobilized ESM is conducted in a simple manner by immersing ESM in a pH 6.0 aqueous solution of HAuCl4 without adding any reductant. The formation of AuNPs on ESM protein fibers is attributed to the reduction of Au(III) ions to Au(0) by the aldehyde moieties of the natural ESM fibers. Energy dispersive X-ray spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction unambiguously identify the presence of AuNPs on ESM. The effect of pH on the in situ synthesis of AuNPs on ESM has been investigated in detail. The pH of the gold precursor (HAuCl4) solution can influence the formation rate, dispersion and size of AuNPs on ESM. At pH ≤3.0 and ≥7.0, no AuNPs are observed on ESM while small AuNPs are homogeneously dispersed on ESM at pH 4.0-6.0. The optimal pH for AuNPs formation on ESM is 6.0. AuNPs/ESMs are used to immobilize glucose oxidase (GOx) for glucose biosensing. AuNPs on ESM can increase the enzyme activity of GOx. The linear response range of the glucose biosensor is 20 μM to 0.80 mM glucose with a detection limit of 17 μM (S/N = 3). The biosensor has been successfully applied to determine the glucose content in commercial glucose injections. Our work provides a very simple, non-toxic, convenient, and green route to synthesize AuNPs on ESM which is potentially useful in the biosensing field.  相似文献   

17.
The interaction between gold in the 0, i, ii and iii oxidation states and the zinc-terminated ZnO(0001) surface is studied via the QM/MM electronic embedding method using density functional theory. The surface sites considered are the vacant zinc interstitial surface site (VZISS) and the bulk-terminated island site (BTIS). We find that on the VZISS, only Au(0) and Au(i) are stable oxidation states. However, all clusters of i to iii oxidation states are stable as substitutionals for Zn2+ in the bulk terminated island site. Au(OH)(x) complexes (x= 1-3) can adsorb exothermically onto the VZISS, indicating that higher oxidation states of gold can be stabilised at this site in the presence of hydroxyl groups. CO is used as a probe molecule to study the reactivity of Au in different oxidation states in VZISS and BTIS. In all cases, we find that the strongest binding of CO is to surface Au(i). Furthermore, CO binding onto Au(0) is stronger when the gold atom is adsorbed onto the VZISS compared to CO binding onto a gas phase neutral gold atom. These results indicate that the nature of the oxidation states of Au on ZnO(0001) will depend on the type of adsorption site. The role of ZnO in Au/ZnO catalysts is not, therefore, merely to disperse gold atoms/particles, but to also modify their electronic properties.  相似文献   

18.
Prolonged exposure to X-rays of HAuCl(4) deposited from an aqueous solution onto a SiO(2)/Si substrate or into a poly(methyl methacrylate) (PMMA) matrix induces reduction of the Au(3+) ions to Au(0) and subsequent nucleation to gold nanoclusters as recorded by X-ray photoelectron spectroscopy. The corresponding major oxidation product is determined as chlorine {HAuCl(4)(ads) + X-rays --> Au(ads) + (3/2)Cl(2)(ads) + HCl(ads)}, which is initially adsorbed onto the surface but eventually diffuses out of the system into the vacuum. The reduced gold atoms aggregate (three-dimensionally) into gold nanoclusters as evidenced by the variation in the binding energy during X-ray exposure, which starts as 1.3 eV but approaches a value that is 0.5 eV higher than that of the bulk gold. The disappearance of the oxidation product (Cl2p signal) and the growth of the nanoclusters (related to the measured binding energy difference between the Si2p of the oxide and Au4f of the reduced gold) exhibit first-order kinetics which is approximately 3 times slower than the reduction of Au(3+), indicating that both of the former processes are diffusion controlled. Similarly, gold ions incorporated into PMMA can also be reduced and aggregated to gold nanoclusters using 254 nm deep UV irradiation in air evidenced by UV-vis-NIR absorption spectrocopy.  相似文献   

19.
Calcium alginate beads were investigated for their biosorption performance in the removal of gold and silver from aqueous solutions. It was found that uptake capacities were significantly affected by the solution pH, with optimum pH values of 2 and 4 for gold and silver, respectively. Kinetic and isotherm experiments were carried out at the optimum pH. The maximum uptake capacities were 290 mg/g for Au and 52 mg/g for Ag. FTIR analysis indicated that both carboxylic and hydroxylic functional groups in alginate beads are involved in the metal binding and later reduction of gold (+3) and silver (+1) to gold (0) and silver (0). SEM and X-ray diffraction confirmed the formation of gold and silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号