首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binary metallic nanowires (NWs) of PtRh and PtRu were synthesized by electrospinning method with compositional variation from 1:3 to 2:1. The electrospun bimetallic NWs were highly alloyed with diameters smaller than 60 nm and lengths up to hundreds of micrometers. The PtRh and PtRu NWs with 1:1 atomic ratio resulted in the higher catalytic mass activity over the methanol electrooxidation than those with the different atomic ratios, and the mass activity of Pt1Ru1 NWs was superior to the other NWs and even better than the commercial catalyst of the highly dispersed Pt1Ru1 nanoparticles on carbon. Moreover, the bimetallic NW electrocatalysts showed the better stability than the bimetallic nanoparticles. The enhancements of electrocatalytic properties for the Pt1Rh1 and Pt1Ru1 NWs could be attributed to their one-dimensional features, which can outperform on the electro-oxidations over the fuel cell electrodes.  相似文献   

2.
The ability to alter the surface population of metal sites in bimetallic nanoparticles (NPs) is of great interest in the context of heterogeneous catalysis. Here, we report findings of surface alterations of Pt and Ru metallic sites in bimetallic carbon-supported (PtRu/C) NPs that were induced by employing a controlled thermal-treatment strategy. The thermal-treatment procedure was designed in such a way that the particle size of the initial NPs was not altered and only the surface population of Pt and Ru was changed, thus allowing us to deduce structural information independent of particle-size effects. X-ray absorption spectroscopy (XAS) was utilized to deduce the structural parameters that can provide information on atomic distribution and/or extent of alloying as well as the surface population of Pt and Ru in PtRu/C NPs. The PtRu/C catalyst sample was obtained from Johnson Matthey, and first the as-received catalyst was reduced in 2 % H2 and 98 % Ar gas mixture at 300 degrees C for 4 h (PtRu/C as-reduced). Later this sample was subjected to thermal treatment in either oxygen (PtRu/C-O2-300) or hydrogen (PtRu/C-H2-350). The XAS results reveal that when the as-reduced PtRu/C catalyst was exposed to the O2 thermal-treatment strategy, a considerable amount of Ru was moved to the catalyst surface. In contrast, the H2 thermal-treatment strategy led to a higher population of Pt on the PtRu/C surface. Characterization of the heat-treated PtRu/C samples by X-ray diffraction and transmission electron microscopy reveals that there is no significant change in the particle size of thermally treated samples when compared to the as-received PtRu/C sample. The electrochemical properties of the as-reduced and heat-treated PtRu/C catalyst samples were confirmed by cyclic voltammetry, CO-adsorption stripping voltammetry, and linear sweep voltammetry. Both XAS and electrochemical investigations concluded that the PtRu/C-H2-350 sample exhibits significant enhancement in reactivity toward methanol oxidation as a result of the increased surface population of the Pt when compared to the PtRu/C-O2-300 and PtRu/C as-reduced samples.  相似文献   

3.
While bimetallic nanoparticles (NPs) offer greater tunability of their catalytic performance than their monometallic counterparts, their detailed mechanistic characterizations are still of a great challenging prospect, particularly at nanoscale. In this paper, we describe a unique (195)Pt nuclear magnetic resonance (NMR) based in situ technique that in principle enables us to access local elemental composition and electronic information across the dimension of the Pt-based NPs with decent spatial resolution. When combined with electrochemical analysis, it opens a way to correlate the local elemental composition and electronic properties with the catalytic activity of the bimetallic NPs. Specifically, from the (195)Pt NMR analysis we concluded that (1) for the PtRu/carbon nanofibers, Ru segregates at the surface while Pt does so inside the NPs; (2) alloying Ru substantially reduces the E(F) local density of states (LDOS) at the Pt atoms; (3) the larger variation in s-like E(F) LDOS at the surface region of the PtRu/graphite nanofibers may imply a higher diversity of catalytic sites available for reactions, therefore explains the observed higher reactivity in methanol electro-oxidation.  相似文献   

4.
We describe a theoretical analysis of the structures of self-organizing nanoparticles formed by Pt and Ru-Pt on carbon support. The calculations provide insights into the nature of these metal particle systems-ones of current interest for use as the electrocatalytic materials of direct oxidation fuel cells-and clarify complex behaviors noted in earlier experimental studies. With clusters deposited via metallo-organic Pt or PtRu(5) complexes, previous experiments [Nashner et al. J. Am. Chem. Soc. 1997, 119, 7760; Nashner et al. J. Am. Chem. Soc. 1998, 120, 8093; Frenkel et al. J. Phys. Chem. B 2001, 105, 12689] showed that the Pt and Pt-Ru based clusters are formed with fcc(111)-stacked cuboctahedral geometry and essentially bulklike metal-metal bond lengths, even for the smallest (few atom) nanoparticles for which the average coordination number is much smaller than that in the bulk, and that Pt in bimetallic [PtRu(5)] clusters segregates to the ambient surface of the supported nanoparticles. We explain these observations and characterize the cluster structures and bond length distributions using density functional theory calculations with graphite as a model for the support. The present study reveals the origin of the observed metal-metal bond length disorder, distinctively different for each system, and demonstrates the profound consequences that result from the cluster/carbon-support interactions and their key role in the structure and electronic properties of supported metallic nanoparticles.  相似文献   

5.
A synthetic method for platinum-ruthenium (PtRu) nanoparticles in aqueous media is proposed. This method employs citric acid as a capping agent and NaBH(4) as a reducing agent with the aid of pH control. The number-averaged size of the PtRu nanoparticles was ca. 2 nm. The crystal phase and chemical composition of the nanoparticles was investigated by X-ray diffraction measurement and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis, which indicated that the nanoparticles mainly consisted of an alloy of Pt and Ru. Electrochemical measurement showed that the PtRu nanoparticles had catalytic activity for methanol oxidation.  相似文献   

6.
Entry of direct methanol fuel cells into the market requires anode catalyst with stable activity. This paper presents a novel method for stabilizing the activity by immobilizing silica on the catalytic PtRu nanoparticles. Characterization was performed by STEM-EDX, XRD, and ICP. The silica-immobilized PtRu nanoparticles showed high and stable activity toward methanol oxidation. The activity was maintained for 1000 h in sulfuric acidic solution, while the activity of the catalyst with "bare" PtRu nanoparticles decayed after 100 h, showing high durability of the silica-immobilized PtRu nanoparticles catalyst in quasi-anodic acidic environment.  相似文献   

7.
A new synthesis method for the preparation of high-performance PtRu electrocatalysts on multiwalled carbon nanotubes (MWCNTs) is reported. In this method, bimetallic PtRu electrocatalysts are deposited onto 1-aminopyrene (1-AP)-functionalized MWCNTs by a microwave-assisted polyol process. The noncovalent functionalization of MWCNTs by 1-AP is simple and can be carried out at room temperature without the use of expensive chemicals or corrosive acids, thus preserving the integrity and the electronic structure of MWCNTs. PtRu electrocatalysts on 1-AP-functionalized MWCNTs show much better distribution with no formation of aggregates, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells as compared to that on conventional acid-treated MWCNTs and carbon black supported PtRu electrocatalysts. PtRu electrocatalysts on 1-AP-functionalized MWCNTs also show significantly enhanced stability.  相似文献   

8.
Carbon nanotubes (CNTs) were non‐covalently functionalized with chitosan (Chit) and then employed as the support for PtRu nanoparticles. The functionalization was carried out at room temperature without the use of corrosive acids, thereby preserving the integrity and the electronic conductivity of the CNTs. Transmission electron microscopy reveals that PtRu nanoparticles were highly dispersed on the surface of Chit‐functionalized CNTs (CNT‐Chit) with small particle‐size. Cyclic voltammetry studies indicated that the PtRu nanoparticle/CNT‐Chit nanohybrids have a higher electrochemical surface area, electrocatalytic performance, and stability towards methanol oxidation compared to PtRu nanoparticles supported on the pristine CNTs.  相似文献   

9.
The cluster complex Pt2Ru4(CO)18 was used as a precursor to prepare a 60 wt% 1:2 Pt:Ru nanoparticles on carbon (PtRu/C) for use as an electrocatalyst for methanol oxidation. This bimetallic carbonyl cluster complex was found to provide smaller, more uniform bimetallic nanoparticle that exhibited higher electrocatalytic activity than a 60 wt% 1:1 Pt:Ru commercial catalyst from E-Tek. Using bimetallic cluster precursors simplifies the synthetic procedures by reducing the need for high temperature reduction and assures a more intimate mixing of the two different metals. Transmission electron microscopy (TEM) images of the catalyst obtained from the cluster precursor showed bimetallic nanoparticles having a narrow size range of 2–3 nm that were dispersed uniformly over the surface of the support. Images of the commercial catalyst showed particles 3–4 nm in diameter that tended to agglomerate near the edges of the carbon support particles. Cyclic voltammograms of methanol oxidation from the two catalysts showed significantly higher activity for the cluster-derived catalyst. The onset potential for methanol oxidation for the cluster-derived catalyst was approximately 170 mV lower than that of the commercial catalyst at 100 A/g Pt, and approximately 250 mV lower at 400 A/g Pt. * This report is dedicated to Prof. Günter Schmid on the occasion of his 70th birthday.  相似文献   

10.
We report a one-pot synthesis of amphiphilic block copolymer-stabilized PtRu nanoparticle modified multi-walled carbon nanotubes (MWCNTs) using RuCl(3)·xH(2)O and H(2)PtCl(6)·6H(2)O as ruthenium and platinum sources, and block copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) as stabilizer agent. PtRu alloyed nanoparticles with an average diameter of 4.6nm are well decorated homogeneously on the exterior surfaces of the MWCNTs. The electrochemical catalytic activity for methanol oxidation of PtRu/MWCNTs and commercial PtRu/C (E-TEK) is comparatively investigated using cyclic voltammetry and chronoamperometry. It is revealed that the PtRu nanoparticle modified MWCNT samples display an enhanced electrochemical catalytic activity than commercial PtRu/C electrode. These results show that PtRu nanoparticles may find applications to fuel cells.  相似文献   

11.
We have fabricated three-dimensional (3D) nanostructured carbon nanotube (CNT) array/PtRu nanoparticle (with the average molar percentage (26%) of Ru) electrodes using anodic aluminum oxide (AAO) templates for micro-fuel cells. 3D nanostructured CNT array was used to support PtRu nanoparticles to enhance the utilization efficiency of Pt. The 3D nanostructured CNT array/PtRu electrodes show the excellent catalytic activity and electrochemical stability of electro-oxidation of methanol. Their anodic current density is 10 times as high as that of PtRu thin-films, which could be explained in terms of the high specific surface area of 3D nanostructured CNT array supporting films and the uniform distribution of PtRu nanoparticles.  相似文献   

12.
Intermetallic PtPb nanoparticles have been synthesized by two solution-phase reduction methods. In the first (PtPb-B), Pt and Pb salts were reduced by sodium borohydride in methanol at room temperature. In the second (PtPb-N), metal-organic Pt and Pb precursors were reduced by sodium naphthalide in diglyme at 135 degrees C. Both methods produced small agglomerated nanoparticles of the ordered intermetallic PtPb (mean crystal domain size <15 nm) which were characterized by pXRD, SEM, UHV-STEM, BET, EDX, and electron diffraction. The electrocatalytic activity of PtPb nanoparticles produced by both methods toward formic acid and methanol oxidation was investigated and compared to Pt and PtRu. Both PtPb-B and PtPb-N nanoparticles exhibited enhanced electrocatalytic activity compared to commercially available Pt black and PtRu nanoparticles. For formic acid oxidation, the PtPb nanoparticles exhibited considerably lower onset potentials and higher current densities than Pt or PtRu. For methanol oxidation, the PtPb nanoparticles had onset potentials slightly positive of PtRu but exhibited higher current densities at potentials about 100 mV positive of onset. The general applicability of these methods for the synthesis of nanoparticles of ordered intermetallic phases is discussed.  相似文献   

13.
pH值对微波协助乙二醇法制备PtRu/C催化剂的影响   总被引:1,自引:0,他引:1  
以微波协助乙二醇工艺合成了碳负载不同粒径大小的PtRu/C纳米催化剂, 主要考察了溶液pH值对PtRu粒子大小的影响. 利用紫外可见光谱、能量散射X射线谱、透射电镜和X射线衍射谱对PtRu纳米催化剂进行了表征. 结果表明, pH值是一个对PtRu粒子大小有着重要影响的因素. TEM结果显示随着溶液pH值的增加, PtRu粒径从3.5 nm减小到1.5 nm. 当溶液pH值达到11.0时, 由于金属粒子被保护, 合成的催化剂中金属载量明显减少. 溶液pH 值在9.0 右合成的PtRu/C催化剂具有适宜粒径(2.4 nm)和均匀分布的金属颗粒, 具有最好的甲醇电氧化活性.  相似文献   

14.
Graphene nanosheets, synthesized by a modified Hummers method, have been functionalized by PMo12, and used as the supports of the PtRu nanoparticles. The electrocatalytic properties of the resultant nanocatalysts (PtRu/PMo12-Graphene) for methanol electro-oxidation have been evaluated by cyclic voltammetry and chronoamperometry. The micrograph and the elemental composition have also been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopy. The results suggest that the addition of PMo12 benefits the high dispersion of graphene nanosheets in the water and the uniform dispersion of the PtRu nanoparticles on the graphene nanosheets, and the PtRu/PMo12-Graphene catalysts have higher electrocatalytic activity and better electrochemical stability for methanol oxidation compared to the PtRu/Graphene catalysts.  相似文献   

15.
We report on results of a detailed scanning tunnelling microscopy study on the formation, size and size distribution, and internal structure of small bimetallic PtRu clusters on a graphene monolayer film supported on a Ru(0001) substrate. These clusters, with sizes around ~15 (Ru) or ~40 (Pt) atoms per cluster at the lowest coverage, are interesting model systems for the catalytic behaviour of small metal PtRu particles, for example for application in electrocatalytic oxidation reactions. The clusters were generated by sequential deposition of the two metals at room temperature. The data reveal a distinct influence of the deposition sequence on the cluster formation process, with Ru pre‐deposition followed by Pt deposition leading to predominantly bimetallic clusters, possibly with a core–shell‐type structure, while the reverse sequence results in co‐existent mono‐ and bimetallic clusters, where the latter are likely to intermix at the interface. The observations are related to the nucleation process of the respective metals on the templated surface, and the 2D growth behaviour of the two metals.  相似文献   

16.
Wormholelike mesoporous carbons(WMCs) with three different pore diameters(D_p),namely WMC-F7(D_p=8.5nm),WMC-F30(D_p=4.4nm),and WMC-FO(D_p = 3.1nm) are prepared via a modified sol-gel process.Then PtRu nanoparticles with the particle size(d_(Pt)) of ~3.2 nm supported on WMCs are synthesized with a modified pulse microwave-assisted polyol method.It is found that the pore diameter of WMCs plays an important role in the electrochemical activity of PtRu toward alcohol electrooxidation reaction.PtRu/WMC-F7 with Dp 2d_(Pt) exhibits the largest electrochemical surface area(ESA) and the highest activity toward methanol electrooxidation.With the decrease in D_p,PtRu/WMC-F30 and PtRu/WMC-FO have much lower ESA and electrochemical activity,especially for the isopropanol electrooxidation with a larger molecular size.When D_p is more than twice d_(Pt),the mass transfer of reactants and electrolyte are easier,and thus more PtRu nanoparticles can be utilized and the catalysts activity can be enhanced.  相似文献   

17.
Platinum/ruthenium nanoparticles were decorated on carbon nanotubes (CNT) in supercritical carbon dioxide, and the nanocomposites were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM images show that the particles size is in the range of 5-10 nm, and XRD patterns show a face-centered cubic crystal structure. Methanol electrooxidation in 1 M sulfuric acid electrolyte containing 2 M methanol were studied onPtRu/CNT (Pt, 4.1 wt%; Ru, 2.3 wt%; molar ratio approximately Pt/Ru = 45:55) catalysts using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. All the electrochemical results show that PtRu/CNT catalysts exhibit high activity for methanol oxidation which resulted from the high surface area of carbon nanotubes and the nanostructure of platinum/ruthenium particles. Compared with Pt/CNT, the onset potential is much lower and the ratio of forward anodic peak current to reverse anodic peak current is much higher for methanol oxidation, which indicates the higher catalytic activity of PtRu/CNT. The presence of Ru with Pt accelerates the rate of methanol oxidation. The results demonstrated the feasibility of processing bimetallic catalysts in supercritical carbon dioxide for fuel cell applications.  相似文献   

18.
The activity of the methanol oxidation reaction of a multiwalled carbon nanotube (MWCNT)-supported PtRu catalyst was investigated and compared with the Vulcan XC-72 carbon-supported catalyst. The PtRu nanoparticles with 1:1 and 7:3 atomic ratios (with similar PtRu loadings and morphological structures) were deposited both on the MWCNTs and on the carbon. Cyclicvoltammetry results demonstrated that the MWCNT-supported PtRu catalyst exhibited a higher mass activity (mA mg(-1) of PtRu) for the methanol oxidation reaction than the carbon-supported PtRu under the condition that both catalysts possess more or less the same PtRu loadings, particle sizes, dispersions, and electrochemical surface area. The direct methanol fuel cell performance test data showed that MWCNT-supported PtRu catalysts yielded about 35-39% higher power densities than the carbon-supported PtRu.  相似文献   

19.
A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.  相似文献   

20.
PtRu nanoparticles supported on Vulcan XC-72 carbon and carbon nanotubes were prepared by a microwave-assisted polyol process. The catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which were uniformly dispersed on carbon, were 2-6 nm in diameter. All PtRu/C catalysts prepared as such displayed the characteristic diffraction peaks of a Pt face-centered cubic structure, excepting that the 2theta values were shifted to slightly higher values. XPS analysis revealed that the catalysts contained mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV), and Ru(IV). The electro-oxidation of methanol was studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. It was found that both PtRu/C catalysts had high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a direct methanol fuel cell single stack test cell using the Vulcan-carbon-supported PtRu alloy as the anode catalyst showed high power density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号